[TensorFlow-Lite][深度学习]【快速简介-1】

前言:

很多场景下面我们需要需要把我们的深度学习模型部署到Android,IOS 手机上面.

Google 通过TensorFlow Lite 提供了对应的解决方案.


目录:

  1. 端侧部署优点
  2. 硬件支持
  3. 性能
  4. 应用案例

一 端侧部署优点

1; 很多场景下面: 无网络,数据无法传到服务器侧进行推理

2:很多场景下面:带宽很低,传递到服务器推理效率低

3:很多场景下面:网络延迟,无法在服务器侧进行实时推理

4: 当把数据传递到往网络侧推理,会导致终端功耗增加.

5: 隐私要求

TFLite 应用例子:

Google 语音识别算法

爱奇艺的视频分割

对象检测


二 硬件支持

android& IOS, MCU, TPU. 目前全球有40亿台设备支持TFLite


三 性能

实测在CPU 上面,1ms 左右能完成推理.

LNet-5结构 ,输入size(1,30)

下面是MobileNet 在各种硬件上面推理性能:


四 应用案例

4.1 NLP 以及图像处理都有丰富的应用案例

4.2 TFLite Model:

可以通过迁移学习,即使不懂ML,也可以快速的部署自己的模型.

看介绍https://www.tensorflow.org/lite/guide?hl=zh-cn,codegen 可以直接通过命令生成

对应的JAVA 代码,但是没有找到对应的入口

3: 支持android studio


参考:

将tflite格式的模型部署在安卓移动端详细步骤_特立独行の猫-华为云开发者联盟

TensorFlow Lite | TensorFlow中文官网

https://www.youtube.com/watch?v=XlLtUsJvsBI&list=PLQY2H8rRoyvwFS5vSa9oV48AOdzfJwxXH&index=1

相关推荐
叶子爱分享1 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜1 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿1 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_1 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1231 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷1 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手1 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野1 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能
聚铭网络2 小时前
案例精选 | 某省级税务局AI大数据日志审计中台应用实践
大数据·人工智能·web安全
涛神-DevExpress资深开发者2 小时前
DevExpress V25.1 版本更新,开启控件AI新时代
人工智能·devexpress·v25.1·ai智能控件