[TensorFlow-Lite][深度学习]【快速简介-1】

前言:

很多场景下面我们需要需要把我们的深度学习模型部署到Android,IOS 手机上面.

Google 通过TensorFlow Lite 提供了对应的解决方案.


目录:

  1. 端侧部署优点
  2. 硬件支持
  3. 性能
  4. 应用案例

一 端侧部署优点

1; 很多场景下面: 无网络,数据无法传到服务器侧进行推理

2:很多场景下面:带宽很低,传递到服务器推理效率低

3:很多场景下面:网络延迟,无法在服务器侧进行实时推理

4: 当把数据传递到往网络侧推理,会导致终端功耗增加.

5: 隐私要求

TFLite 应用例子:

Google 语音识别算法

爱奇艺的视频分割

对象检测


二 硬件支持

android& IOS, MCU, TPU. 目前全球有40亿台设备支持TFLite


三 性能

实测在CPU 上面,1ms 左右能完成推理.

LNet-5结构 ,输入size(1,30)

下面是MobileNet 在各种硬件上面推理性能:


四 应用案例

4.1 NLP 以及图像处理都有丰富的应用案例

4.2 TFLite Model:

可以通过迁移学习,即使不懂ML,也可以快速的部署自己的模型.

看介绍https://www.tensorflow.org/lite/guide?hl=zh-cn,codegen 可以直接通过命令生成

对应的JAVA 代码,但是没有找到对应的入口

3: 支持android studio


参考:

将tflite格式的模型部署在安卓移动端详细步骤_特立独行の猫-华为云开发者联盟

TensorFlow Lite | TensorFlow中文官网

https://www.youtube.com/watch?v=XlLtUsJvsBI&list=PLQY2H8rRoyvwFS5vSa9oV48AOdzfJwxXH&index=1

相关推荐
martian66541 分钟前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室8 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself8 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot