庞加莱猜想真的被证明了吗

一般认为,庞加莱猜想作出巨大贡献的,主要是瑟斯顿(Thurston),他给出了几何化猜想,认为宇宙一定由八种基本拓扑形状构成。
第一,在之前,1961年斯梅尔宣称证明了五维和五维以上成立的结论。1981年弗里德曼宣称证明了四维成立的结论。
问题1,:什么是4维和5维?几何学家从来没有正确定义过。只有3维和3维以下有明确的文字定义和几何画面定义。
有谁能够画出一个4维或者5维空间结构,并且说明是在3维结构基础上的合理解释。
详见本人拙作【空间的维度】
空间的维度-CSDN博客
问题2,瑟斯顿用猜想证明猜想当然是不严谨的。
问题3,瑟斯顿认为宇宙只有8种结构(没有证明,凭什么说只有8种结构?)。

佩雷尔曼(Perelman)便完成了瑟斯顿"几何化猜想"的证明。说是只有这8种中的球形才是单连通的,
于是排除了其它7种结构。
2002 年 11 月 12 日,佩雷尔曼在 arXiv.org 上公布了自己的证明,并在之后半年中又发布了两篇系列论文。这三篇文章概述了庞加莱猜想以及更一般的几何化猜想的证明,从而实现了哈密顿(Hamilton)提出的纲领。并利用几何化猜想证明了庞加莱猜想。
以上的工作纯属胡说八道。

第二,佩雷尔曼共发表了三篇网文(preprint),第二篇网文叙述了一个定理(7.4)却没给出证明,只是说在下一篇preprint中给出证明。前两篇论文的目标是瑟斯顿猜想(其结果包含了庞加莱猜想)。但是,他的'下一篇'却没有给出所预报的证明,而是给出庞加莱猜想所需的一些引理。也就是说,佩雷尔曼第二篇论文的定理7.4至今仍未有证明
2002年,佩雷尔曼贴出两篇论文,其中第二篇有个定理7.4,从三个条件推导出一个结论。但佩雷尔曼随后说:"第三个条件可以去掉,具体证明将在下一篇文章中给出"。他随后到美国讲学,说这些方法证明了瑟斯顿猜想(比庞加莱猜想更大的猜想)。回到俄国后,他贴出第三篇论文,并没有前述定理7.4的证明,只有针对庞加莱猜想的几个定理。
定理7.4是佩雷尔曼的死穴,20年过去了,证明仍没给出。
在2005年,Shioya和Yamaguchi修改了佩氏定理7.4的条件,宣称在无界流形条件下证明了该定理的结论。

这说明:佩雷尔曼对瑟氏猜想的解决思路错了,他以为只有"闭或有界"才能解决这一猜想。
佩雷尔曼的定理7.4和Shioya/Yamaguchi随后发表在学刊上的定理。Shioya/Yamaguchi证明的结果是佩雷尔曼定理的一个特例(closed manifolds)。

佩雷尔曼开了头,但做错了。
他给了两个版本:
(1)用三个条件推结论------条件太多,很难应用;
(2)只用两个条件推结论,他自己至今十几年证不出来。
从两个证明之区别可以看出,佩雷尔曼认为:证明瑟斯顿猜想必须要"闭流形或者有凸边界"。而Shioya/Yamaguchi把此条件去了。所以,非常显然,佩氏对瑟斯顿猜想的思路错了。我们知道,数学家群体普遍的精神疾患和智力低下,根本不具备多次连续正确推理的能力。

相关推荐
杜若南星14 天前
VASCO:增减材混合制造的体积和表面共分解
论文阅读·经验分享·笔记·算法·制造·几何学·论文笔记
wzf@robotics_notes1 个月前
[笔记] 仿射变换性质的代数证明
笔记·计算机视觉·机器人·几何学·空间计算
wzf@robotics_notes2 个月前
对极约束及其性质 —— 公式详细推导
计算机视觉·矩阵·机器人·几何学·相机
QH_ShareHub2 个月前
卷积公式的几何学理解
python·几何学·可视化·卷积公式
长脖鹿Johnny2 个月前
3D 场景模拟 2D 碰撞玩法的方案
算法·游戏·3d·游戏引擎·几何学
CAD三维软件二次开发2 个月前
图形几何算法 -- 凸包算法
算法·3d·c#·几何学
黑不溜秋的3 个月前
C++ 几何算法 - 向量点乘,叉乘及其应用
c++·算法·几何学
拿我格子衫来4 个月前
图形编辑器基于Paper.js教程04: Paper.js中的基础知识
图像处理·编辑器·几何学
_GR4 个月前
《概率论与数理统计》期末复习笔记_上
笔记·学习·概率论·几何学·数理统计