Zynq系列FPGA实现SDI视频编解码+图像缩放+多路视频拼接,基于GTX高速接口,提供8套工程源码和技术支持

目录

Zynq系列FPGA实现SDI视频编解码+图像缩放+多路视频拼接,基于GTX高速接口,提供8套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

工程概述

本设计基于Zynq系列的Zynq7100 FPGA开发板实现SDI视频编解码+图像缩放+多路视频拼接,输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机;两路输入SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;

本设计的目的是做图像缩放+多路视频拼接后输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了两种输出方式,一种是HDMI输出,另一种是3G-SDI输出,这两种方式都需要对解码BT1120视频进行转RGB和图像缓存操作和图像缩放操作;图像缩放方案采用自研的HLS方案;本设计使用BT1120转RGB模块实现视频格式转换;使用自研的HLS图像缩放模块实现对输入视频的图像缩放操作;使用本Xilinx官方的VDMA图像缓存架构实现图像3帧缓存,缓存介质为板载的PS端DDR3;图像从DDR3读出后,进入Xilinx官方的Video Mixer IP核实现多路视频拼接操作;然后送入HDMI发送模块输出HDMI显示器,这是HDMI输出方式;或者经过RGB转BT1120模块实现视频格式转换,然后视频进入SMPTE SD/HD/3G SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过FPGA内部的GTX高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器,这是SDI输出方式;本博客提供8套工程源码,具体如下:

现对上述8套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;再经过2路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为960x540;再经过Xilinx官方的2路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现2路视频拼接操作;然后将拼接视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示2路960x540的有效图像,即2分屏,详细显示效果请看文章末尾的输出演示视频;最后通过HDMI显示器显示图像;该工程需要运行Zynq软核;适用于SDI视频拼接转HDMI场景;

工程源码2

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制1份得到4路视频,以模拟4路输入(如果你的开发板有4路输入,则无需此操作);再经过4路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为960x540;再经过Xilinx官方的4路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现4路视频拼接操作;然后将拼接视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示4路960x540的有效图像,即4分屏,详细显示效果请看文章末尾的输出演示视频;最后通过HDMI显示器显示图像;该工程需要运行Zynq软核;适用于SDI视频拼接转HDMI场景;

工程源码3

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制3份得到8路视频,以模拟8路输入(如果你的开发板有8路输入,则无需此操作);再经过8路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为480x540;再经过Xilinx官方的8路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现8路视频拼接操作;然后将拼接视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示8路480x540的有效图像,即8分屏,详细显示效果请看文章末尾的输出演示视频;最后通过HDMI显示器显示图像;该工程需要运行Zynq软核;适用于SDI视频拼接转HDMI场景;

工程源码4

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制7份得到16路视频,以模拟16路输入(如果你的开发板有16路输入,则无需此操作);再经过16路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为240x540;再经过Xilinx官方的16路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现16路视频拼接操作;然后将拼接视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示16路240x540的有效图像,即16分屏,详细显示效果请看文章末尾的输出演示视频;最后通过HDMI显示器显示图像;该工程需要运行Zynq软核;适用于SDI视频拼接转HDMI场景;

工程源码5

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;再经过2路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为960x540;再经过Xilinx官方的2路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现2路视频拼接操作;然后将视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1920x1080@60Hz背景下叠加显示2路960x540的有效图像,即2分屏,最后使用SDI转HDMI盒子连接到HDMI显示器显示;详细显示效果请看文章末尾的输出演示视频;该工程需要运行Zynq软核;适用于SDI视频拼接转SDI场景;

工程源码6

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制1份得到4路视频,以模拟4路输入(如果你的开发板有4路输入,则无需此操作);再经过4路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为960x540;再经过Xilinx官方的4路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现4路视频拼接操作;然后将视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1920x1080@60Hz背景下叠加显示4路960x540的有效图像,即4分屏,最后使用SDI转HDMI盒子连接到HDMI显示器显示;详细显示效果请看文章末尾的输出演示视频;该工程需要运行Zynq软核;适用于SDI视频拼接转SDI场景;

工程源码7

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制3份得到8路视频,以模拟8路输入(如果你的开发板有8路输入,则无需此操作);再经过8路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为480x540;再经过Xilinx官方的8路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现8路视频拼接操作;然后将视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1920x1080@60Hz背景下叠加显示8路480x540的有效图像,即8分屏,最后使用SDI转HDMI盒子连接到HDMI显示器显示;详细显示效果请看文章末尾的输出演示视频;该工程需要运行Zynq软核;适用于SDI视频拼接转SDI场景;

工程源码8

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源有两个,一个是3G-SDI相机,分辨率为1920x1080@60Hz,另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机,分辨率为1920x1080@60Hz;两路输入视频经过板载的2个Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过2路GTX将SDI视频解串为并行数据;再经过2路SMPTE SDI IP核将SDI解码为2路BT1120数据;再经过2路BT1120转RGB模块将BT1120转换为RGB888视频;然后将2路视频分别复制7份得到16路视频,以模拟16路输入(如果你的开发板有16路输入,则无需此操作);再经过16路自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为240x540;再经过Xilinx官方的16路VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后调用Xilinx官方的Video Mixer IP核实现16路视频拼接操作;然后将视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1920x1080@60Hz背景下叠加显示16路240x540的有效图像,即16分屏,最后使用SDI转HDMI盒子连接到HDMI显示器显示;详细显示效果请看文章末尾的输出演示视频;该工程需要运行Zynq软核;适用于SDI视频拼接转SDI场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本博已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

本方案的无缩放应用

本方案有无缩放版本的应用,只做SDI视频编解码,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx--Kintex系列FPGA上的应用

本方案在Xilinx--Kintex系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:

注意!!!!

注意!!!!
紫色箭头:3G-SDI输出路径
红色箭头:HDMI输出路径

SDI 输入设备

SDI 输入设备有两个,分别接入FPGA开发板的2路SDI视频输入接口;一个是3G-SDI相机,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;另一个HDMI转3G-SDI盒子,盒子外接笔记本电脑以模拟SDI相机;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:

GTX 解串与串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTX起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:

SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,该IP接收来自于GTX的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:

BT1120转RGB后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到AXI4-Stream视频流的转换,该IP不需要SDK软件配置;

自研HLS图像缩放详解

本设计的图像缩放采用HLS方案C++代码实现,并综合成RTL后封装为IP,可在vivado中调用该IP,关于这个方案详情,请参考我之前的博客,博客链接如下:
点击直接前往

自研HLS图像缩放优点如下:

1:采用HLS实现,C++代码量很小,核心代码仅3行,并以综合成RTL代码后封装为自定义IP,方便在vivado中调用;

2:采用双线性插值算法,可实现任意比例、任意尺寸缩放,灵活性可谓天花板级别;

3:驱动简单、使用方便,提供SDK驱动程序,在主函数中调用API直接实现缩放操作;

自研HLS图像缩放缺点如下:

1:只适用于Xilinx Zynq系列FPGA,需要其他Xilinx 系列FPGA使用则需要找博主定制,需要修改HLS工程中的FPGA型号,然后重新综合编译封装成IP才能在新的FPGA中使用;

2:只适用于vivado2019.1及其以下版本,从vivado2019.2版本开始,已不能使用其以下版本的HLS IP核,这是Xilinx官方的问题;

该IP在vivado中的综合资源占用情况如下:

HLS图像缩放需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;以工程源码1为例,HLS图像缩放在Block Design设计如下图:

VDMA图像缓存

本设计的视频缓存方案采用Xilinx官方的的VDMA图像缓存架构;缓存介质为PS端DDR3;以工程源码1为例,VDMA使用Xilinx vivado的Block Design设计,如下图:

为了降低延时,VDMA设置为缓存1帧,如下:

Video Mixer 多路视频拼接详解

这里重点介绍一下Xilinx官方的Video Mixer IP;

支持最大分辨率:8K,即可以处理高达8K的视频;

支持最多16层视频拼接叠加,即最多可拼接16路视频;

输入视频格式:AXI4-Stream;

输出视频格式:AXI4-Stream;

需要SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;

提供自定义的配置API,通过调用该库函数即可轻松使用,具体参考SDK代码;

模块占用的FPGA逻辑资源更小,相比于自己写的HLS视频拼接而言,官方的Video Mixer资源占用大约减小30%左右,且更高效:以工程源码1的2路视频拼接为例,Video Mixer逻辑资源如下,请谨慎评估你的FPGA资源情况;

关于这个Video Mixer视频拼接方案详情,请参考我之前的博客,博客链接如下:
点击直接前往

以工程源码1为例,Video Mixer使用Xilinx vivado的Block Design设计,如下图:

HDMI视频输出架构

HDMI视频输出架构如下:

参考Xilinx官方设计,使用VTC+AXI4-Stream To Video Out架构实现输出视频从AXI4-Stream到Native格式的转换;然后使用纯verilog代码实现的RGB888转HDMI模块实现RGB888到HDMI的转换,最后通过显示器显示,RGB888转HDMI模块代码架构如下:

关于RGB888转HDMI模块,请参考我之前的博客,博客地址:点击直接前往

SDI视频输出架构之-->RGB转BT1120

SDI视频输出架构首先要实现VDMA读出的AXI4-Stream到Native格式的转换,得到RGB888视频后再通过RGB转BT1120实现到BT1120视频的转换,其架构如下:

在SDI输出方式下VGA时序模块的像素时钟由SMPTE SD/HD/3G SDI IP核的发送用户时钟提供,在不同的SDI模式下像素时钟不同,比如在3G-SDI模式下像素时钟为148.5M,在HD-SDI的720P@60Hz模式下像素时钟为74.25M;

在SDI输出方式下需要使用RGB转BT1120模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:

SDI视频输出架构之-->SMPTE SD/HD/3G SDI + GTX

这两部分与接收过程公用相应模块,功能上是接收过程的逆过程,不再赘述;

SDI视频输出架构之-->Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:

SDI视频输出架构之-->SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程源码架构之-->逻辑设计

本博客提供8套工程源码,以工程源码1为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计如下:

以工程源码1为例,工程源码架构如下,其他工程与之类似:

工程源码架构之-->SDK软件设计

本设计工程的PL端时钟由Zynq软核提供,所以需要运行运行SDK以启动Zynq,此外,HLS图像缩放、VDMA、Video Mixer等IP核都需要运行软件驱动才能正常工作,所以,以工程源码1的2路视频拼接为例,SDK软件代码架构如下,其他工程与之类似:

4、工程源码1详解-->2路视频缩放拼接,HDMI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz;

输出:HDMI ,1920x1080@60Hz背景下叠加显示2路拼接的960x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到960x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:2路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

5、工程源码2详解-->4路视频缩放拼接,HDMI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制1份,得到2路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制1份,得到2路;

输出:HDMI ,1920x1080@60Hz背景下叠加显示4路拼接的960x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到960x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:4路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

6、工程源码3详解-->8路视频缩放拼接,HDMI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制3份,得到4路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制3份,得到4路;

输出:HDMI ,1920x1080@60Hz背景下叠加显示8路拼接的480x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到480x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:8路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

7、工程源码4详解-->16路视频缩放拼接,HDMI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制7份,得到8路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制7份,得到8路;

输出:HDMI ,1920x1080@60Hz背景下叠加显示16路拼接的240x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到240x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:16路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

8、工程源码5详解-->2路视频缩放拼接,3G-SDI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz;

输出:3G-SDI,1920x1080@60Hz背景下叠加显示2路拼接的960x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到960x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:2路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

9、工程源码6详解-->4路视频缩放拼接,3G-SDI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制1份,得到2路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制1份,得到2路;

输出:3G-SDI,1920x1080@60Hz背景下叠加显示4路拼接的960x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到960x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:4路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

10、工程源码7详解-->8路视频缩放拼接,3G-SDI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制3份,得到4路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制3份,得到4路;

输出:3G-SDI,1920x1080@60Hz背景下叠加显示8路拼接的480x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到480x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:8路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

11、工程源码8详解-->16路视频缩放拼接,3G-SDI输出版本

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入1:3G-SDI相机,分辨率1920x1080@60Hz,然后复制7份,得到8路;

输入2:HDMI转SDI盒子(外接笔记本电脑),分辨率1920x1080@60Hz,然后复制7份,得到8路;

输出:3G-SDI,1920x1080@60Hz背景下叠加显示16路拼接的240x540的有效图像;

图像缩放方案:自研HLS图像缩放;

图像缩放实例:1920x1080缩放到240x540;

图像缓存方案:Xilinx官方VDMA方案;

图像缓存介质:PS端DDR3;

视频拼接方案:Xilinx官方Video Mixer方案;

视频拼接应用:16路视频拼接;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI拼接转HDMI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

12、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;

2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件-->另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;

3:如果你的vivado版本高于本工程vivado版本,解决如下:

打开工程后会发现IP都被锁住了,如下:

此时需要升级IP,操作如下:

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:


更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;

2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;

3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

13、上板调试验证

准备工作

需要准备的器材如下:

FPGA开发板;

SDI摄像头和HDMI转SDI盒子;

SDI转HDMI盒子;

HDMI显示器;

我的开发板了连接如下:

2路SDI视频缩放拼接-->输出视频演示

2路SDI视频缩放拼接,输出如下:

Zynq-SDI-2路视频拼接

4路SDI视频缩放拼接-->输出视频演示

4路SDI视频缩放拼接,输出如下:

Zynq-SDI-4路视频拼接

8路SDI视频缩放拼接-->输出视频演示

8路SDI视频缩放拼接,输出如下:

Zynq-SDI-8路视频拼接

16路SDI视频缩放拼接-->输出视频演示

16路SDI视频缩放拼接,输出如下:

Zynq-SDI-16路视频拼接

14、福利:工程代码的获取

福利:工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,

资料获取方式:私,或者文章末尾的V名片。

网盘资料如下:

此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:

相关推荐
runing_an_min41 分钟前
ffmpeg视频滤镜:提取缩略图-framestep
ffmpeg·音视频·framestep
小曲曲2 小时前
接口上传视频和oss直传视频到阿里云组件
javascript·阿里云·音视频
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
佑华硬盘拷贝机4 小时前
音频档案批量拷贝:专业SD拷贝机解决方案
音视频
EasyNVR4 小时前
NVR管理平台EasyNVR多个NVR同时管理:全方位安防监控视频融合云平台方案
安全·音视频·监控·视频监控
xcLeigh11 小时前
HTML5超酷响应式视频背景动画特效(六种风格,附源码)
前端·音视频·html5
fei_sun12 小时前
【Verilog】第一章作业
fpga开发·verilog
深圳市雷龙发展有限公司longsto12 小时前
基于FPGA(现场可编程门阵列)的SD NAND图片显示系统是一个复杂的项目,它涉及硬件设计、FPGA编程、SD卡接口、NAND闪存控制以及图像显示等多个方面
fpga开发
韩曙亮13 小时前
【FFmpeg】FFmpeg 内存结构 ③ ( AVPacket 函数简介 | av_packet_ref 函数 | av_packet_clone 函数 )
ffmpeg·音视频·avpacket·av_packet_clone·av_packet_ref·ffmpeg内存结构
9527华安17 小时前
FPGA实现PCIE3.0视频采集转10G万兆UDP网络输出,基于XDMA+GTH架构,提供工程源码和技术支持
网络·fpga开发·udp·音视频·xdma·pcie3.0·万兆网