【机器学习】作业 Exam1

线性回归预测

唉,研0了,得学机器学习了。当然还是听的吴恩达老师的课,虽然全是英文,但是,怎么评价呢,讲得既专业又通俗易懂,初学者(像我这样的菜鸡)都值得一看!!

根据人口预测利润 输入变量只有一个特征 人口,输出变量为利润

很基础的东西,跟着老师来,lab里面都已经给你写好了。

python 复制代码
import pandas as pd
from matplotlib import pyplot as plt

# 损失函数
def compute_loss(x, y, w, b):
    m = x.shape[0]
    sum = 0.
    for i in range(m):
        sum += (w * x[i] + b - y[i]) ** 2
    return sum / m

# 梯度下降
def gradient_descent(x, y, w, b, eta, iterations):
    m = x.shape[0]
    loss_history = []
    for _ in range(iterations):
        sum_w = 0.
        sum_b = 0.
        for i in range(m):
            sum_w += (w * x[i] + b - y[i]) * x[i]
            sum_b += (w * x[i] + b - y[i])
        new_w = w - eta * sum_w / m
        new_b = b - eta * sum_b / m
        w = new_w
        b = new_b
        loss_history.append(compute_loss(x, y, w, b))
    return w, b, loss_history

if __name__ == '__main__':
    data = pd.read_csv(r'D:\BaiduNetdiskDownload\data_sets\ex1data1.txt', names=["x", "y"])
    x = data['x']
    y = data['y']

    w, b, loss_history = gradient_descent(x, y, 0, 0, 0.01, 1000)
    epochs = range(len(loss_history))
    print(w, b)
    # 打印图标
    plt.plot(epochs, loss_history, color='red', label='loss')
    # plt.plot(x, w * x + b, color='red')
    # plt.scatter(x, y, color='blue')
    plt.show()
几个图表

损失:

回归预测:

我的预期:

w : 1.1272942024281842, b : -3.241402144274422

相关推荐
昨夜见军贴06161 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力2 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场2 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌2 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了2 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书12 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
码农水水3 小时前
米哈游Java面试被问:机器学习模型的在线服务和A/B测试
java·开发语言·数据库·spring boot·后端·机器学习·word
产品何同学3 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I3 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术3 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python