【机器学习】作业 Exam1

线性回归预测

唉,研0了,得学机器学习了。当然还是听的吴恩达老师的课,虽然全是英文,但是,怎么评价呢,讲得既专业又通俗易懂,初学者(像我这样的菜鸡)都值得一看!!

根据人口预测利润 输入变量只有一个特征 人口,输出变量为利润

很基础的东西,跟着老师来,lab里面都已经给你写好了。

python 复制代码
import pandas as pd
from matplotlib import pyplot as plt

# 损失函数
def compute_loss(x, y, w, b):
    m = x.shape[0]
    sum = 0.
    for i in range(m):
        sum += (w * x[i] + b - y[i]) ** 2
    return sum / m

# 梯度下降
def gradient_descent(x, y, w, b, eta, iterations):
    m = x.shape[0]
    loss_history = []
    for _ in range(iterations):
        sum_w = 0.
        sum_b = 0.
        for i in range(m):
            sum_w += (w * x[i] + b - y[i]) * x[i]
            sum_b += (w * x[i] + b - y[i])
        new_w = w - eta * sum_w / m
        new_b = b - eta * sum_b / m
        w = new_w
        b = new_b
        loss_history.append(compute_loss(x, y, w, b))
    return w, b, loss_history

if __name__ == '__main__':
    data = pd.read_csv(r'D:\BaiduNetdiskDownload\data_sets\ex1data1.txt', names=["x", "y"])
    x = data['x']
    y = data['y']

    w, b, loss_history = gradient_descent(x, y, 0, 0, 0.01, 1000)
    epochs = range(len(loss_history))
    print(w, b)
    # 打印图标
    plt.plot(epochs, loss_history, color='red', label='loss')
    # plt.plot(x, w * x + b, color='red')
    # plt.scatter(x, y, color='blue')
    plt.show()
几个图表

损失:

回归预测:

我的预期:

w : 1.1272942024281842, b : -3.241402144274422

相关推荐
~~李木子~~43 分钟前
中文垃圾短信分类实验报告
人工智能·分类·数据挖掘
TsingtaoAI5 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^5 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1736 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao6 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
搬砖者(视觉算法工程师)7 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室7 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub7 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc
oranglay7 小时前
提示词(Prompt Engineering)核心思维
人工智能·prompt
极速learner7 小时前
【Prompt分享】自学英语教程的AI 提示语:流程、范例及可视化实现
人工智能·prompt·ai写作