【机器学习】作业 Exam1

线性回归预测

唉,研0了,得学机器学习了。当然还是听的吴恩达老师的课,虽然全是英文,但是,怎么评价呢,讲得既专业又通俗易懂,初学者(像我这样的菜鸡)都值得一看!!

根据人口预测利润 输入变量只有一个特征 人口,输出变量为利润

很基础的东西,跟着老师来,lab里面都已经给你写好了。

python 复制代码
import pandas as pd
from matplotlib import pyplot as plt

# 损失函数
def compute_loss(x, y, w, b):
    m = x.shape[0]
    sum = 0.
    for i in range(m):
        sum += (w * x[i] + b - y[i]) ** 2
    return sum / m

# 梯度下降
def gradient_descent(x, y, w, b, eta, iterations):
    m = x.shape[0]
    loss_history = []
    for _ in range(iterations):
        sum_w = 0.
        sum_b = 0.
        for i in range(m):
            sum_w += (w * x[i] + b - y[i]) * x[i]
            sum_b += (w * x[i] + b - y[i])
        new_w = w - eta * sum_w / m
        new_b = b - eta * sum_b / m
        w = new_w
        b = new_b
        loss_history.append(compute_loss(x, y, w, b))
    return w, b, loss_history

if __name__ == '__main__':
    data = pd.read_csv(r'D:\BaiduNetdiskDownload\data_sets\ex1data1.txt', names=["x", "y"])
    x = data['x']
    y = data['y']

    w, b, loss_history = gradient_descent(x, y, 0, 0, 0.01, 1000)
    epochs = range(len(loss_history))
    print(w, b)
    # 打印图标
    plt.plot(epochs, loss_history, color='red', label='loss')
    # plt.plot(x, w * x + b, color='red')
    # plt.scatter(x, y, color='blue')
    plt.show()
几个图表

损失:

回归预测:

我的预期:

w : 1.1272942024281842, b : -3.241402144274422

相关推荐
古希腊掌管学习的神37 分钟前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI1 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类