R包:ggsci期刊配色

介绍

不同期刊配色大多数时候不一样,为了更好符合期刊图片颜色的配色,有人开发了ggsci这个R包。它提供以下函数:

  • scale_color_palname()

  • scale_fill_palname()

对应不同期刊的color和fill函数。

导入数据+R包

R 复制代码
library("ggsci")
library("ggplot2")
library("gridExtra")

data("diamonds")

p1 <- ggplot(subset(diamonds, carat >= 2.2),
       aes(x = table, y = price, colour = cut)) +
       geom_point(alpha = 0.7) +
      geom_smooth(method = "loess", alpha = 0.05, size = 1, span = 1) +
      theme_bw()

p2 <-  ggplot(subset(diamonds, carat > 2.2 & depth > 55 & depth < 70),
          aes(x = depth, fill = cut)) +
          geom_histogram(colour = "black", binwidth = 1, position = "dodge") +
          theme_bw()

NPG: Nature Publishing Group

R 复制代码
p1_npg <- p1 + scale_color_npg()
p2_npg <- p2 + scale_fill_npg()
grid.arrange(p1_npg, p2_npg, ncol = 2)

AAAS: American Association for the Advancement of Science

R 复制代码
p1_aaas <- p1 + scale_color_aaas()
p2_aaas <- p2 + scale_fill_aaas()
grid.arrange(p1_aaas, p2_aaas, ncol = 2)

NEJM:The New England Journal of Medicine

R 复制代码
p1_nejm <- p1 + scale_color_nejm()
p2_nejm <- p2 + scale_fill_nejm()
grid.arrange(p1_nejm, p2_nejm, ncol = 2)

Lancet: Lancet journals

R 复制代码
p1_lancet <- p1 + scale_color_lancet()
p2_lancet <- p2 + scale_fill_lancet()
grid.arrange(p1_lancet, p2_lancet, ncol = 2)
JAMA: The Journal of the American Medical Association
R 复制代码
p1_jama <- p1 + scale_color_jama()
p2_jama <- p2 + scale_fill_jama()
grid.arrange(p1_jama, p2_jama, ncol = 2)

UCSCGB: UCSC Genome Browser

R 复制代码
p1_ucscgb <- p1 + scale_color_ucscgb()
p2_ucscgb <- p2 + scale_fill_ucscgb()
grid.arrange(p1_ucscgb, p2_ucscgb, ncol = 2)

Tron Legacy

R 复制代码
p1_tron <- p1 + theme_dark() + theme(
    panel.background = element_rect(fill = "#2D2D2D"),
    legend.key = element_rect(fill = "#2D2D2D")) +
  scale_color_tron()
p2_tron <- p2 + theme_dark() + theme(
    panel.background = element_rect(fill = "#2D2D2D")) +
  scale_fill_tron()
grid.arrange(p1_tron, p2_tron, ncol = 2)

GSEA: GSEA GenePattern

R 复制代码
library("reshape2")

data("mtcars")
cor <- cor(unname(cbind(mtcars, mtcars, mtcars, mtcars)))
cor_melt <- melt(cor)

p3 <- ggplot(cor_melt, aes(x = Var1, y = Var2, fill = value)) +
  geom_tile(colour = "black", size = 0.3) +
  theme_bw() +
  theme(axis.title.x = element_blank(),
        axis.title.y = element_blank())

p3_gsea <- p3 + scale_fill_gsea()
p3_gsea_inv <- p3 + scale_fill_gsea(reverse = TRUE)
grid.arrange(p3_gsea, p3_gsea_inv, ncol = 2)

Reference

  1. ggsci
相关推荐
Faker66363aaa21 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312312 天前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
不剪发的Tony老师2 天前
Shaper:一款免费开源的数据可视化工具
sql·数据可视化
码界筑梦坊2 天前
327-基于Django的兰州空气质量大数据可视化分析系统
python·信息可视化·数据分析·django·毕业设计·数据可视化
砚边数影3 天前
数据可视化入门:Matplotlib 基础语法与折线图绘制
数据库·信息可视化·matplotlib·数据可视化·kingbase·数据库平替用金仓·金仓数据库
jiang_changsheng4 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd4 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
deephub4 天前
分类数据 EDA 实战:如何发现隐藏的层次结构
人工智能·python·机器学习·数据分析·数据可视化
杨超越luckly4 天前
从传统 GIS 向智能/自动化脚本演进:地铁接驳公交识别的 ArcGIS 与 Python 双路径实践
开发语言·arcgis·php·交互·数据可视化
小贺儿开发4 天前
Unity3D 智慧城市管理平台
数据库·人工智能·unity·智慧城市·数据可视化