特征值究竟体现了矩阵的什么特征?

特征值究竟体现了矩阵的什么特征?

简单来说就是x经过矩阵A映射后和自己平行

希尔伯特第一次提出eigenvalue,这里的eigen就是自己的 。所以eigenvalue也称作本征值

特征值和特征向量刻画了矩阵变换空间的特征

对平面上的任意向量可以如法炮制,把他在特征向量的坐标系下分解。分别在每个轴上伸缩,再用平行四边形法则加起来。就可以轻松确定任何一个向量被映射后到底在哪里

可以说,矩阵特征向量的变化很好的描述了矩阵对空间的影响

将以上总结为3步

  1. 把向量分解为特征向量的线性组合

  2. 根据特征值分别缩放每个特征向量,两个特征值分别是2和3,所以两个系数就变成了两倍和三倍

  3. 重新将这些特征向量组合起来,将变换后的这些组合的系数向量使用线性映射P再变回去,就得到了原始空间的最终结果

经过以上3步就得到了A作用于一个向量映射的整个过程。

我们为什么要费这么大的劲求这个分解呢?

  1. 计算简便

其中求特征值,利用特征多项式来求

线性空间当中几乎所有向量,经过某个线性映射的反复迭代以后,都会趋近于特征值最大的一个方向。

为什么要讲相似矩阵?

P这个矩阵承担着两个视角(默认视角和特征向量视角)之间的转换。

使用不同的视角 来观察同一个线性映射。会得到不同的矩阵,于是这些矩阵叫做相似矩阵

头尾两个矩阵,就是这两个视角的转移矩阵

这个映射具有的性质,就被所有能够用相似变换所观察到的其他矩阵所共有。在某些方向上,方向不变时,伸长的倍数是保持的。这就是为什么**所有相似矩阵,他们特征值的集合是一样的。**而特征向量不一样

在特征向量的视角下,矩阵的迭代累乘变得特别简单,才使得我们可以用特征分解快速的计算出一个矩阵的幂次

一些结论

1.矩阵所有特征值的乘积等于行列式

2.几何重数不会超过代数重数

视频链接:

https://www.bilibili.com/video/BV1TH4y1L7PV/?spm_id_from=333.788\&vd_source=8272bd48fee17396a4a1746c256ab0ae

相关推荐
盼海8 分钟前
排序算法(五)--归并排序
数据结构·算法·排序算法
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
Swift社区7 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman8 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年8 小时前
数据结构 (1)基本概念和术语
数据结构·算法
Dong雨8 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
SoraLuna9 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie
liujjjiyun9 小时前
小R的随机播放顺序
数据结构·c++·算法
¥ 多多¥9 小时前
c++中mystring运算符重载
开发语言·c++·算法