特征值究竟体现了矩阵的什么特征?

特征值究竟体现了矩阵的什么特征?

简单来说就是x经过矩阵A映射后和自己平行

希尔伯特第一次提出eigenvalue,这里的eigen就是自己的 。所以eigenvalue也称作本征值

特征值和特征向量刻画了矩阵变换空间的特征

对平面上的任意向量可以如法炮制,把他在特征向量的坐标系下分解。分别在每个轴上伸缩,再用平行四边形法则加起来。就可以轻松确定任何一个向量被映射后到底在哪里

可以说,矩阵特征向量的变化很好的描述了矩阵对空间的影响

将以上总结为3步

  1. 把向量分解为特征向量的线性组合

  2. 根据特征值分别缩放每个特征向量,两个特征值分别是2和3,所以两个系数就变成了两倍和三倍

  3. 重新将这些特征向量组合起来,将变换后的这些组合的系数向量使用线性映射P再变回去,就得到了原始空间的最终结果

经过以上3步就得到了A作用于一个向量映射的整个过程。

我们为什么要费这么大的劲求这个分解呢?

  1. 计算简便

其中求特征值,利用特征多项式来求

线性空间当中几乎所有向量,经过某个线性映射的反复迭代以后,都会趋近于特征值最大的一个方向。

为什么要讲相似矩阵?

P这个矩阵承担着两个视角(默认视角和特征向量视角)之间的转换。

使用不同的视角 来观察同一个线性映射。会得到不同的矩阵,于是这些矩阵叫做相似矩阵

头尾两个矩阵,就是这两个视角的转移矩阵

这个映射具有的性质,就被所有能够用相似变换所观察到的其他矩阵所共有。在某些方向上,方向不变时,伸长的倍数是保持的。这就是为什么**所有相似矩阵,他们特征值的集合是一样的。**而特征向量不一样

在特征向量的视角下,矩阵的迭代累乘变得特别简单,才使得我们可以用特征分解快速的计算出一个矩阵的幂次

一些结论

1.矩阵所有特征值的乘积等于行列式

2.几何重数不会超过代数重数

视频链接:

https://www.bilibili.com/video/BV1TH4y1L7PV/?spm_id_from=333.788\&vd_source=8272bd48fee17396a4a1746c256ab0ae

相关推荐
疯狂的喵6 分钟前
实时信号处理库
开发语言·c++·算法
小O的算法实验室8 分钟前
2023年ESWA SCI1区TOP,地面车辆与无人机协同系统的多区域覆盖双层路径规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
啵啵鱼爱吃小猫咪11 分钟前
机器人标准DH(SDH)与改进DH(MDH)
开发语言·人工智能·python·学习·算法·机器人
pp起床17 分钟前
回溯算法 | part01
算法
iAkuya26 分钟前
(leetcode)力扣100 53课程表(深搜+拓扑排序)
算法·leetcode·职场和发展
范纹杉想快点毕业27 分钟前
嵌入式通信协议深度解析:从SPI/I2C到CAN总线的完整实现指南嵌入式工程师的炼成之路:从校园到实战的跨越
linux·运维·服务器·数据库·算法
啊阿狸不会拉杆27 分钟前
《数字信号处理》第10章-数字信号处理中的有限字长效应
算法·matlab·fpga开发·信号处理·数字信号处理·dsp
week_泽31 分钟前
GBDT 算法中构建第一个弱学习器(CART 回归树)-计算示例
学习·算法·回归·gbdt
傻小胖34 分钟前
16.ETH-状态树-北大肖臻老师客堂笔记
笔记·算法·区块链·哈希算法
张张努力变强35 分钟前
C++ 类和对象(五):初始化列表、static、友元、内部类等7大知识点全攻略
开发语言·数据结构·c++·算法