特征值究竟体现了矩阵的什么特征?

特征值究竟体现了矩阵的什么特征?

简单来说就是x经过矩阵A映射后和自己平行

希尔伯特第一次提出eigenvalue,这里的eigen就是自己的 。所以eigenvalue也称作本征值

特征值和特征向量刻画了矩阵变换空间的特征

对平面上的任意向量可以如法炮制,把他在特征向量的坐标系下分解。分别在每个轴上伸缩,再用平行四边形法则加起来。就可以轻松确定任何一个向量被映射后到底在哪里

可以说,矩阵特征向量的变化很好的描述了矩阵对空间的影响

将以上总结为3步

  1. 把向量分解为特征向量的线性组合

  2. 根据特征值分别缩放每个特征向量,两个特征值分别是2和3,所以两个系数就变成了两倍和三倍

  3. 重新将这些特征向量组合起来,将变换后的这些组合的系数向量使用线性映射P再变回去,就得到了原始空间的最终结果

经过以上3步就得到了A作用于一个向量映射的整个过程。

我们为什么要费这么大的劲求这个分解呢?

  1. 计算简便

其中求特征值,利用特征多项式来求

线性空间当中几乎所有向量,经过某个线性映射的反复迭代以后,都会趋近于特征值最大的一个方向。

为什么要讲相似矩阵?

P这个矩阵承担着两个视角(默认视角和特征向量视角)之间的转换。

使用不同的视角 来观察同一个线性映射。会得到不同的矩阵,于是这些矩阵叫做相似矩阵

头尾两个矩阵,就是这两个视角的转移矩阵

这个映射具有的性质,就被所有能够用相似变换所观察到的其他矩阵所共有。在某些方向上,方向不变时,伸长的倍数是保持的。这就是为什么**所有相似矩阵,他们特征值的集合是一样的。**而特征向量不一样

在特征向量的视角下,矩阵的迭代累乘变得特别简单,才使得我们可以用特征分解快速的计算出一个矩阵的幂次

一些结论

1.矩阵所有特征值的乘积等于行列式

2.几何重数不会超过代数重数

视频链接:

https://www.bilibili.com/video/BV1TH4y1L7PV/?spm_id_from=333.788\&vd_source=8272bd48fee17396a4a1746c256ab0ae

相关推荐
冲帕Chompa3 分钟前
图论part09dijkstra算法
算法·图论
·云扬·12 分钟前
【PmHub后端篇】PmHub中基于Redis加Lua脚本的计数器算法限流实现
redis·算法·lua
周Echo周14 分钟前
20、map和set、unordered_map、un_ordered_set的复现
c语言·开发语言·数据结构·c++·算法·leetcode·list
zkmall18 分钟前
推荐算法工程化:ZKmall模板商城的B2C 商城的用户分层推荐策略
算法·机器学习·推荐算法
矿渣渣1 小时前
AFFS2 的 `yaffs_ext_tags` 数据结构详解
数据结构·算法·文件系统·yaffs2
workflower1 小时前
使用谱聚类将相似度矩阵分为2类
人工智能·深度学习·算法·机器学习·设计模式·软件工程·软件需求
HappyAcmen1 小时前
线代第二章矩阵第八节逆矩阵、解矩阵方程
笔记·学习·线性代数·矩阵
cwywsx1 小时前
Linux:进程控制2
linux·运维·算法
真的想上岸啊1 小时前
c语言第一个小游戏:贪吃蛇小游戏06
c语言·算法·链表
边跑边掩护1 小时前
LeetCode 648 单词替换题解
算法·leetcode·职场和发展