特征值究竟体现了矩阵的什么特征?

特征值究竟体现了矩阵的什么特征?

简单来说就是x经过矩阵A映射后和自己平行

希尔伯特第一次提出eigenvalue,这里的eigen就是自己的 。所以eigenvalue也称作本征值

特征值和特征向量刻画了矩阵变换空间的特征

对平面上的任意向量可以如法炮制,把他在特征向量的坐标系下分解。分别在每个轴上伸缩,再用平行四边形法则加起来。就可以轻松确定任何一个向量被映射后到底在哪里

可以说,矩阵特征向量的变化很好的描述了矩阵对空间的影响

将以上总结为3步

  1. 把向量分解为特征向量的线性组合

  2. 根据特征值分别缩放每个特征向量,两个特征值分别是2和3,所以两个系数就变成了两倍和三倍

  3. 重新将这些特征向量组合起来,将变换后的这些组合的系数向量使用线性映射P再变回去,就得到了原始空间的最终结果

经过以上3步就得到了A作用于一个向量映射的整个过程。

我们为什么要费这么大的劲求这个分解呢?

  1. 计算简便

其中求特征值,利用特征多项式来求

线性空间当中几乎所有向量,经过某个线性映射的反复迭代以后,都会趋近于特征值最大的一个方向。

为什么要讲相似矩阵?

P这个矩阵承担着两个视角(默认视角和特征向量视角)之间的转换。

使用不同的视角 来观察同一个线性映射。会得到不同的矩阵,于是这些矩阵叫做相似矩阵

头尾两个矩阵,就是这两个视角的转移矩阵

这个映射具有的性质,就被所有能够用相似变换所观察到的其他矩阵所共有。在某些方向上,方向不变时,伸长的倍数是保持的。这就是为什么**所有相似矩阵,他们特征值的集合是一样的。**而特征向量不一样

在特征向量的视角下,矩阵的迭代累乘变得特别简单,才使得我们可以用特征分解快速的计算出一个矩阵的幂次

一些结论

1.矩阵所有特征值的乘积等于行列式

2.几何重数不会超过代数重数

视频链接:

https://www.bilibili.com/video/BV1TH4y1L7PV/?spm_id_from=333.788\&vd_source=8272bd48fee17396a4a1746c256ab0ae

相关推荐
TDengine (老段)13 分钟前
TDengine IDMP 背后的技术三问:目录、标准与情景
大数据·数据库·物联网·算法·时序数据库·iot·tdengine
Crazy learner17 分钟前
C语言fgets函数详解:安全读取字符串的利器
c语言·开发语言·算法
flashlight_hi22 分钟前
LeetCode 分类刷题:2824. 统计和小于目标的下标对数目
javascript·数据结构·算法·leetcode
MicroTech202528 分钟前
微算法科技(NASDAQ:MLGO)利用鸽群分散算法,提高区块链交易匹配算法效能
算法·区块链·量子计算
mochensage35 分钟前
贪心算法
算法·信奥
yi.Ist1 小时前
8.4 Codeforces练习
算法
HW-BASE1 小时前
C语言控制语句练习题1
c语言·开发语言·单片机·算法·嵌入式·c
weixin_478689761 小时前
算法【3】【链表 & 二叉树】
算法
KoiHeng2 小时前
排序算法(二)
算法·排序算法
源远流长jerry2 小时前
C++、STL面试题总结(一)
c++·算法