特征值究竟体现了矩阵的什么特征?

特征值究竟体现了矩阵的什么特征?

简单来说就是x经过矩阵A映射后和自己平行

希尔伯特第一次提出eigenvalue,这里的eigen就是自己的 。所以eigenvalue也称作本征值

特征值和特征向量刻画了矩阵变换空间的特征

对平面上的任意向量可以如法炮制,把他在特征向量的坐标系下分解。分别在每个轴上伸缩,再用平行四边形法则加起来。就可以轻松确定任何一个向量被映射后到底在哪里

可以说,矩阵特征向量的变化很好的描述了矩阵对空间的影响

将以上总结为3步

  1. 把向量分解为特征向量的线性组合

  2. 根据特征值分别缩放每个特征向量,两个特征值分别是2和3,所以两个系数就变成了两倍和三倍

  3. 重新将这些特征向量组合起来,将变换后的这些组合的系数向量使用线性映射P再变回去,就得到了原始空间的最终结果

经过以上3步就得到了A作用于一个向量映射的整个过程。

我们为什么要费这么大的劲求这个分解呢?

  1. 计算简便

其中求特征值,利用特征多项式来求

线性空间当中几乎所有向量,经过某个线性映射的反复迭代以后,都会趋近于特征值最大的一个方向。

为什么要讲相似矩阵?

P这个矩阵承担着两个视角(默认视角和特征向量视角)之间的转换。

使用不同的视角 来观察同一个线性映射。会得到不同的矩阵,于是这些矩阵叫做相似矩阵

头尾两个矩阵,就是这两个视角的转移矩阵

这个映射具有的性质,就被所有能够用相似变换所观察到的其他矩阵所共有。在某些方向上,方向不变时,伸长的倍数是保持的。这就是为什么**所有相似矩阵,他们特征值的集合是一样的。**而特征向量不一样

在特征向量的视角下,矩阵的迭代累乘变得特别简单,才使得我们可以用特征分解快速的计算出一个矩阵的幂次

一些结论

1.矩阵所有特征值的乘积等于行列式

2.几何重数不会超过代数重数

视频链接:

https://www.bilibili.com/video/BV1TH4y1L7PV/?spm_id_from=333.788\&vd_source=8272bd48fee17396a4a1746c256ab0ae

相关推荐
冠位观测者5 分钟前
【Leetcode 热题 100】394. 字符串解码
数据结构·算法·leetcode
涛ing42 分钟前
12. C语言 数组与指针(深入理解)
linux·c语言·开发语言·数据结构·c++·算法·ubuntu
cxr82843 分钟前
二、智能体强化学习——深度强化学习核心算法
算法
nwsuaf_huasir1 小时前
S变换matlab实现
人工智能·算法·matlab
伊一大数据&人工智能学习日志1 小时前
决策树中的相关概念
算法·决策树·机器学习
快敲啊死鬼1 小时前
二叉树层序遍历 Leetcode102.二叉树的层序遍历
算法
2401_858286112 小时前
124.【C语言】数据结构之快速排序的小区间优化和非递归的解决方法
c语言·开发语言·数据结构·算法·排序算法·
Navigator_Z3 小时前
LeetCode //C - 541. Reverse String II
c语言·算法·leetcode
划步为心4 小时前
代码随想录day03
算法
地瓜机器人4 小时前
开放词汇检测新晋SOTA:地瓜机器人开源DOSOD实时检测算法
人工智能·科技·算法·机器人·rdk