Hive的分区表&分桶表

1.分区表:

是Hive中的一种表类型,通过将表中的数据划分为多个子集(分区),每个分区对应表中的某个特定的列值,可以提高查询性能和管理数据的效率。分区表的每个分区存储在单独的目录中,分区的定义基于表中的一个或多个列。使用分区表的主要目的是减少查询扫描的数据量,从而提高查询效率。

分区过细可能导致生成大量的小文件,影响HDFS性能和MapReduce任务的效率。需要定期进行小文件合并操作。

sql 复制代码
CREATE TABLE customer_data (
  customer_id STRING,
  name STRING,
  age INT,
  email STRING
)
PARTITIONED BY (city STRING)
STORED AS ORC;

select *
from customer_data;

-- 插入 New York 的数据
INSERT INTO TABLE customer_data PARTITION (city='New York')
VALUES
('1', 'John Doe', 30, 'john@example.com'),
('2', 'Jane Smith', 25, 'jane@example.com'),
('3', 'Bob Johnson', 40, 'bob@example.com');

-- 插入 Los Angeles 的数据
INSERT INTO TABLE customer_data PARTITION (city='Los Angeles')
VALUES
('4', 'Alice Brown', 32, 'alice@example.com'),
('5', 'Charlie Davis', 28, 'charlie@example.com');

-- 插入 Chicago 的数据
INSERT INTO TABLE customer_data PARTITION (city='Chicago')
VALUES
('6', 'Eve White', 45, 'eve@example.com'),
('7', 'Frank Black', 37, 'frank@example.com');

可以查看到hdfs上创建了三个目录,对应三个分区,使用带有where条件的select进行查询,会直接从对应的分区目录下查找数据,从而减少查询扫描的数据量,提高性能。

sql 复制代码
SELECT * FROM customer_data WHERE city='New York';

2.分桶表:

是Hive中的另一种表类型,通过对表中的数据进行散列分桶(hash bucket),可以进一步提高查询性能,尤其是在进行连接(join)和聚合(aggregation)操作时。分桶表将数据划分为固定数量的桶(bucket),每个桶存储在单独的文件中。

---------------------------------------------------分桶表的特点---------------------------------------------------

数据划分:根据一个或多个列的哈希值,将数据分布到固定数量的桶中。

文件存储:每个桶的数据存储在独立的文件中。

均匀分布:理想情况下,数据在所有桶中均匀分布,从而提高查询性能。

sql 复制代码
CREATE TABLE customer_data2 (
  customer_id STRING,
  name STRING,
  age INT,
  email STRING
)
CLUSTERED BY (customer_id) INTO 4 BUCKETS
STORED AS ORC;
-- 插入数据到分桶表
--通过这些步骤,我们创建了一个按 customer_id 列进行分桶的 Hive 表 customer_data,并插入了具体的数据。
INSERT INTO TABLE customer_data2 VALUES
('1', 'John Doe', 30, 'john@example.com'),
('2', 'Jane Smith', 25, 'jane@example.com'),
('3', 'Bob Johnson', 40, 'bob@example.com'),
('4', 'Alice Brown', 32, 'alice@example.com'),
('5', 'Charlie Davis', 28, 'charlie@example.com'),
('6', 'Eve White', 45, 'eve@example.com'),
('7', 'Frank Black', 37, 'frank@example.com'),
('8', 'Grace Green', 22, 'grace@example.com');

select *
from customer_data2;

通过查看hdfs上的路径我们可以看到这些数据会按照对应列的hash值分到不同的桶中

相关推荐
阿年、嗯啊9 小时前
MySQL和Hive中的行转列、列转行
数据库·hive·mysql·侧窗·行专列、列转行·hive侧窗列转行·构造map数据结构
leap_ruo14 小时前
pyspark 执行group by操作 - 原始数据非hive
数据仓库·hive·hadoop
B站计算机毕业设计超人15 小时前
计算机毕业设计PyHive+Hadoop深圳共享单车预测系统 共享单车数据分析可视化大屏 共享单车爬虫 共享单车数据仓库 机器学习 深度学习
大数据·hadoop·python·深度学习·机器学习·数据分析·数据可视化
Faith_xzc19 小时前
如何排查 Apache Doris 中 “Failed to commit txn“ 导入失败问题?
大数据·数据仓库·开源·apache·数据库开发·doris
出发行进19 小时前
Sqoop其二,Job任务、增量导入、Hdfs导入、龙目
hive·hadoop·sqoop·etl
神秘打工猴1 天前
Hadoop解决数据倾斜方法
hadoop
武子康1 天前
大数据-266 实时数仓 - Canal 对接 Kafka 客户端测试
java·大数据·数据仓库·分布式·kafka
言慢行善1 天前
Servlet
hive·hadoop·servlet
zincooo1 天前
Hive分区表添加字段
数据仓库·hive·hadoop
昊昊该干饭了2 天前
数仓建模(二) 从关系型数据库到数据仓库的演变
大数据·数据仓库·数据库架构