Hive的分区表&分桶表

1.分区表:

是Hive中的一种表类型,通过将表中的数据划分为多个子集(分区),每个分区对应表中的某个特定的列值,可以提高查询性能和管理数据的效率。分区表的每个分区存储在单独的目录中,分区的定义基于表中的一个或多个列。使用分区表的主要目的是减少查询扫描的数据量,从而提高查询效率。

分区过细可能导致生成大量的小文件,影响HDFS性能和MapReduce任务的效率。需要定期进行小文件合并操作。

sql 复制代码
CREATE TABLE customer_data (
  customer_id STRING,
  name STRING,
  age INT,
  email STRING
)
PARTITIONED BY (city STRING)
STORED AS ORC;

select *
from customer_data;

-- 插入 New York 的数据
INSERT INTO TABLE customer_data PARTITION (city='New York')
VALUES
('1', 'John Doe', 30, 'john@example.com'),
('2', 'Jane Smith', 25, 'jane@example.com'),
('3', 'Bob Johnson', 40, 'bob@example.com');

-- 插入 Los Angeles 的数据
INSERT INTO TABLE customer_data PARTITION (city='Los Angeles')
VALUES
('4', 'Alice Brown', 32, 'alice@example.com'),
('5', 'Charlie Davis', 28, 'charlie@example.com');

-- 插入 Chicago 的数据
INSERT INTO TABLE customer_data PARTITION (city='Chicago')
VALUES
('6', 'Eve White', 45, 'eve@example.com'),
('7', 'Frank Black', 37, 'frank@example.com');

可以查看到hdfs上创建了三个目录,对应三个分区,使用带有where条件的select进行查询,会直接从对应的分区目录下查找数据,从而减少查询扫描的数据量,提高性能。

sql 复制代码
SELECT * FROM customer_data WHERE city='New York';

2.分桶表:

是Hive中的另一种表类型,通过对表中的数据进行散列分桶(hash bucket),可以进一步提高查询性能,尤其是在进行连接(join)和聚合(aggregation)操作时。分桶表将数据划分为固定数量的桶(bucket),每个桶存储在单独的文件中。

---------------------------------------------------分桶表的特点---------------------------------------------------

数据划分:根据一个或多个列的哈希值,将数据分布到固定数量的桶中。

文件存储:每个桶的数据存储在独立的文件中。

均匀分布:理想情况下,数据在所有桶中均匀分布,从而提高查询性能。

sql 复制代码
CREATE TABLE customer_data2 (
  customer_id STRING,
  name STRING,
  age INT,
  email STRING
)
CLUSTERED BY (customer_id) INTO 4 BUCKETS
STORED AS ORC;
-- 插入数据到分桶表
--通过这些步骤,我们创建了一个按 customer_id 列进行分桶的 Hive 表 customer_data,并插入了具体的数据。
INSERT INTO TABLE customer_data2 VALUES
('1', 'John Doe', 30, 'john@example.com'),
('2', 'Jane Smith', 25, 'jane@example.com'),
('3', 'Bob Johnson', 40, 'bob@example.com'),
('4', 'Alice Brown', 32, 'alice@example.com'),
('5', 'Charlie Davis', 28, 'charlie@example.com'),
('6', 'Eve White', 45, 'eve@example.com'),
('7', 'Frank Black', 37, 'frank@example.com'),
('8', 'Grace Green', 22, 'grace@example.com');

select *
from customer_data2;

通过查看hdfs上的路径我们可以看到这些数据会按照对应列的hash值分到不同的桶中

相关推荐
默 语1 天前
Spring Boot 3.x升级踩坑记:到底值不值得升级?
hive·spring boot·后端
ha_lydms2 天前
AnalyticDB导入MaxCompute数据的几种方式
大数据·数据仓库·阿里云·dataworks·maxcompute·odps·analyticdb
ha_lydms2 天前
2、Spark 函数_a/b/c
大数据·c语言·hive·spark·时序数据库·dataworks·数据开发
是阿威啊3 天前
【第二站】本地hadoop集群配置yarn模式
大数据·linux·hadoop·yarn
好大哥呀3 天前
Hadoop yarn
大数据·hadoop·分布式
红队it3 天前
【数据分析】基于Spark链家网租房数据分析可视化大屏(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
java·数据库·hadoop·分布式·python·数据分析·spark
本旺4 天前
【数据开发离谱场景记录】Hive + ES 复杂查询场景处理
hive·hadoop·elasticsearch
莫叫石榴姐4 天前
Doris为2.1版本,但json_each不可以用解决方法
数据仓库·json
无泪无花月隐星沉4 天前
uos server 1070e部署Hadoop
大数据·运维·服务器·hadoop·分布式·uos·国产化os
悟能不能悟4 天前
springboot全局异常
大数据·hive·spring boot