大模型面试(三)

这次是某家公司的一个电话面试,问的过程还比较简单直接。

问:我们在大模型开源项目的应用上遇到了什么困难?

这个。。有两个困难,一个是RAG的优化,一开始RAG是比较慢的,而且召回率不高;

后来使用了HyQE的方法,针对一段文本,提出一个问题和它对应,以补充的问题来建立文档索引。当用户提问的时候,直接在数据库里寻找相似问题,这样检索效率高而且召回率高。

第二个是语音识别识别错误的问题;把识别语音和转写文字的特征一起输入到神经网络里,这样可以提高识别准确度。(或者多几个候选词)

然后问到了我以前在一家人工智能公司的工作经验,问到了其中的内容审核项目。

这个项目的创新点在哪里?过拟合的情况?

主要是从网上爬取文本数据,然后给公开的审核接口先过一遍,然后训练过程中遇到的难样本,重新标注再训练。

正负样本不均匀的问题:实际场景,正样本远少于负样本,用了针对样本不平衡的loss比如dice loss,weighted ce等,然后多种loss采用加权和的方式进行融合(问题:有没有其他融合的方式呢?辅助loss?)。

过拟合?主要是看在测试集上的loss表现吧。

还提到了分词的问题;但是这个是不可避免的,这种词要衡量一个边界条件,要不要使用关键词检索规则还是经过bert模型判断。

对将来发展的规划?大模型应该怎么应用?

反问环节:

大模型的应用主要是面向to C还是to b的?都有,客服这种是to C的

训练的数据和算力准备的怎么样?数据以文本数据为主,算力似乎不太够,只有t级别的显卡?比较寒酸了,有a10显卡吗

什么指标比较看重?避免大模型幻觉。

相关推荐
uhakadotcom3 分钟前
RunPod:AI云计算的强大助手
后端·面试·github
uhakadotcom6 分钟前
Google AlloyDB AI 与 PostgreSQL 的核心区别
后端·面试·github
uhakadotcom9 分钟前
使用Go语言编写简单爬虫程序
后端·面试·github
吴法刚34 分钟前
14-Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析(二分类))
人工智能·深度学习·自然语言处理·分类·langchain·bert·langgraph
拉不动的猪1 小时前
项目基础搭建时的一些基本注意点
前端·javascript·面试
龙萱坤诺2 小时前
GPT-4o-image模型:开启AI图片编辑新时代
人工智能·深度学习
_一条咸鱼_2 小时前
Android大厂面试秘籍: View 相关面试题深入分析
android·面试·android jetpack
_一条咸鱼_2 小时前
Android 大厂面试秘籍:Hilt 框架的测试支持模块(八)
android·面试·kotlin
乌旭2 小时前
AI芯片混战:GPU vs TPU vs NPU的算力与能效博弈
人工智能·pytorch·python·深度学习·机器学习·ai·ai编程
Cutey9166 小时前
实现可配置的滚动效果:JavaScript与CSS双方案
javascript·面试