大模型面试(三)

这次是某家公司的一个电话面试,问的过程还比较简单直接。

问:我们在大模型开源项目的应用上遇到了什么困难?

这个。。有两个困难,一个是RAG的优化,一开始RAG是比较慢的,而且召回率不高;

后来使用了HyQE的方法,针对一段文本,提出一个问题和它对应,以补充的问题来建立文档索引。当用户提问的时候,直接在数据库里寻找相似问题,这样检索效率高而且召回率高。

第二个是语音识别识别错误的问题;把识别语音和转写文字的特征一起输入到神经网络里,这样可以提高识别准确度。(或者多几个候选词)

然后问到了我以前在一家人工智能公司的工作经验,问到了其中的内容审核项目。

这个项目的创新点在哪里?过拟合的情况?

主要是从网上爬取文本数据,然后给公开的审核接口先过一遍,然后训练过程中遇到的难样本,重新标注再训练。

正负样本不均匀的问题:实际场景,正样本远少于负样本,用了针对样本不平衡的loss比如dice loss,weighted ce等,然后多种loss采用加权和的方式进行融合(问题:有没有其他融合的方式呢?辅助loss?)。

过拟合?主要是看在测试集上的loss表现吧。

还提到了分词的问题;但是这个是不可避免的,这种词要衡量一个边界条件,要不要使用关键词检索规则还是经过bert模型判断。

对将来发展的规划?大模型应该怎么应用?

反问环节:

大模型的应用主要是面向to C还是to b的?都有,客服这种是to C的

训练的数据和算力准备的怎么样?数据以文本数据为主,算力似乎不太够,只有t级别的显卡?比较寒酸了,有a10显卡吗

什么指标比较看重?避免大模型幻觉。

相关推荐
ZzMemory几秒前
深入理解JS(八):事件循环,单线程的“一心多用”
前端·javascript·面试
cscshaha1 小时前
《从零构建大语言模型》学习笔记1,环境配置
人工智能·深度学习·语言模型·llm·从零构建大语言模型
小高0073 小时前
🚀前端异步编程:Promise vs Async/Await,实战对比与应用
前端·javascript·面试
碳酸的唐3 小时前
MobileNetV3: 高效移动端深度学习的前沿实现
人工智能·深度学习
amazinging4 小时前
北京-4年功能测试2年空窗-报培训班学测开-第七十一天-面试第二天
python·学习·面试
丘山子4 小时前
如何规避 A/B Testing 中的致命错误?何时进行 A/B 测试?
前端·后端·面试
Dream it possible!5 小时前
LeetCode 面试经典 150_数组/字符串_加油站(14_134_C++_中等)(贪心算法)
c++·leetcode·面试
UrbanJazzerati5 小时前
PowerShell 从基础到实战 3(控制结构与脚本交互)
面试·shell
国家不保护废物5 小时前
跨域问题:从同源策略到JSONP、CORS实战,前端必知必会
前端·javascript·面试
言兴5 小时前
#Web Workers 深度解析:让 JavaScript 拥抱多线程
前端·javascript·面试