tusimple车道线检测 标注自己的数据集

一、打开labelme工具进行数据标注


二、数据格式转换

2.1 标签转换

运行Anaconda Prompt,进入json标签文件所在目录,逐个转换,分布运行

cpp 复制代码
labelme_json_to_dataset 0000.json
labelme_json_to_dataset 0001.json
labelme_json_to_dataset 0002.json
labelme_json_to_dataset 0003.json
labelme_json_to_dataset 0004.json
labelme_json_to_dataset 0005.json

结束后,会得到这些文件夹

看看里面是什么内容。。

2.2 生成二值图标签和train.py

  1. 创建一个data_json_train空文件夹

  2. 在data_json_train下,创建images、clips、gt_image、gt_binary_image、gt_instance_image 共5个文件夹

  3. 在images下创建data空文件夹

  4. 在data下创建annotations空文件夹

  5. 将2.1节的生成的文件复制到annotations文件夹下

  6. 在data_json_train下,创建data.py,代码如下:

cpp 复制代码
# data.py
import cv2
from skimage import measure, color
from skimage.measure import regionprops
import numpy as np
import os
import copy

# 优化的地方:应该用文件的名字来命名新的文件,而不是简单的进行 +1 操作就进行对图片文件的命名
# BUG 已解决
def skimageFilter(gray):
    binary_warped = copy.copy(gray)
    binary_warped[binary_warped > 0.1] = 255
    gray = (np.dstack((gray, gray, gray)) * 255).astype('uint8')
    labels = measure.label(gray[:, :, 0], connectivity=1)
    dst = color.label2rgb(labels, bg_label=0, bg_color=(0, 0, 0))
    gray = cv2.cvtColor(np.uint8(dst * 255), cv2.COLOR_RGB2GRAY)
    return binary_warped, gray

def moveImageTodir(path, targetPath, name):
    if os.path.isdir(path):
        image_name = "gt_image/" + str(name) + ".png"
        binary_name = "gt_binary_image/" + str(name) + ".png"
        instance_name = "gt_instance_image/" + str(name) + ".png"
        train_rows = image_name + " " + binary_name + " " + instance_name + "\n"
        origin_img = cv2.imread(path + "/img.png")
        origin_img = cv2.resize(origin_img, (1280, 720))
        cv2.imwrite(targetPath + "/" + image_name, origin_img)
        img = cv2.imread(path + '/label.png')
        img = cv2.resize(img, (1280, 720))
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        binary_warped, instance = skimageFilter(gray)

        cv2.imwrite(targetPath + "/" + binary_name, binary_warped)
        cv2.imwrite(targetPath + "/" + instance_name, instance)

        print("success create data name is : ", train_rows)
        return train_rows
    return None

if __name__ == "__main__":
    print('--------------开始执行----------------')
    #count = 1
    with open("./train.txt", 'w+') as file:
        for images_dir in os.listdir("./images"):
            dir_name = os.path.join("./images", images_dir + "/annotations")
            for annotations_dir in os.listdir(dir_name):
                json_dir = os.path.join(dir_name, annotations_dir)
                if os.path.isdir(json_dir):
                    # train_rows = moveImageTodir(json_dir, "./", str(count).zfill(4))
                    # 利用 json 文件夹的名字来对生成的图片进行命名,比较好对应
                    train_rows = moveImageTodir(json_dir, "./", json_dir.split('\\')[-1])
                    file.write(train_rows)
                    #count += 1
  1. 运行data.py,会生成train.txt,以及gt_image,gt_binary_image,gt_instance_image下会生成转换后的标签
    看下gt_binary_image下的东西。。

由于标注的数据少,所有val.txt复制train.txtx的内容。

使用train.txt,gt_image,gt_binary_image,gt_instance_image就可以进行训练了

大功告成!

相关推荐
云卓科技1 天前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI1 天前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
高登先生1 天前
京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会
大数据·人工智能·科技·机器人·自动驾驶
开MINI的工科男1 天前
【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程
人工智能·笔记·自动驾驶·预测与决策·时空联合规划
地平线开发者3 天前
【征程 6 工具链性能分析与优化-1】编译器预估 perf 解读与性能分析
算法·自动驾驶
春贵丶csdn3 天前
又一次安装autoware.universe的过程
自动驾驶
深蓝学院3 天前
CoEdge: 面向自动驾驶的协作式边缘计算系统,实现分布式实时深度学习任务的高效调度与资源优化
分布式·自动驾驶·边缘计算
地平线开发者3 天前
【征程 6 工具链性能分析与优化-2】模型性能优化建议
算法·自动驾驶
Mr.Winter`3 天前
路径规划 | ROS中多个路径规划算法可视化与性能对比分析
人工智能·算法·机器人·自动驾驶·ros·ros2·路径规划
江_小_白4 天前
关于自动驾驶等级相关知识
人工智能·机器学习·自动驾驶