LaneNet(2):工程代码复现(pytorch版本)(15分钟上手)

一、下载代码

在github上开源的LaneNet项目数目较少,其中只有基于tensorflow 1.x的项目,这个是基于pytorch版本复现的。

github仓库:https://github.com/IrohXu/lanenet-lane-detection-pytorch

二、数据集准备

上面的代码工程中已经准备好了标注好的数据(只有6张),这里不需要额外准备。

如果想自己标注数据集,可参考我的另一篇文章:tusimple车道线检测 标注自己的数据集

如果想要训练大规模数据,可以前往https://github.com/TuSimple/tusimple-benchmark/issues/3下载公开数据集。

三、训练

3.1 修改训练参数

数据集路径

model/utils/cli_helper.py路径下,修改

训练轮数

model/utils/cli_helper.py路径下,修改

3.2 训练

运行train.py文件

3.3 deeplabv3+训练

默认使用的是ENet作为backbone,如果要使用deeplabv3+结构训练

可以在model/utils/cli_helper.py路径下修改Model_type为DeepLabV3+,重新训练即可。

四、测试

4.1 修改测试参数

修改测试图片路径

model/utils/cli_helper_test.py路径下,修改

4.2 测试

运行test.py文件,在./test_output文件夹下查看测试结果

相关推荐
小康小小涵6 小时前
改进型深度Q-网格DQN和蒙特卡洛树搜索MCTS以及模型预测控制MPC强化学习的机器人室内导航仿真
人工智能·机器人·自动驾驶
田里的水稻6 小时前
FA_拟合和插值(FI)-逼近样条03(准均匀B样条的计算)
人工智能·数学建模·机器人·自动驾驶
退休钓鱼选手8 小时前
[CommonAPI + vsomeip]通信 客户端 5
c++·人工智能·自动驾驶
loui robot1 天前
规划与控制之局部路径规划算法local_planner
人工智能·算法·自动驾驶
田里的水稻1 天前
FA_拟合和插值(FI,fitting_and_interpolation)-逼近样条02(多阶贝塞尔曲线)
数学建模·自动驾驶·几何学
应用市场3 天前
【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解
人工智能·3d·自动驾驶
春日见3 天前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
王锋(oxwangfeng)3 天前
企业出海网络架构与数据安全方案
网络·架构·自动驾驶
模型时代3 天前
英伟达开放物理AI模型助力机器人与自动驾驶发展
人工智能·机器人·自动驾驶
孙宇航的博客4 天前
自动驾驶核心技术
人工智能·机器学习·自动驾驶