LaneNet(2):工程代码复现(pytorch版本)(15分钟上手)

一、下载代码

在github上开源的LaneNet项目数目较少,其中只有基于tensorflow 1.x的项目,这个是基于pytorch版本复现的。

github仓库:https://github.com/IrohXu/lanenet-lane-detection-pytorch

二、数据集准备

上面的代码工程中已经准备好了标注好的数据(只有6张),这里不需要额外准备。

如果想自己标注数据集,可参考我的另一篇文章:tusimple车道线检测 标注自己的数据集

如果想要训练大规模数据,可以前往https://github.com/TuSimple/tusimple-benchmark/issues/3下载公开数据集。

三、训练

3.1 修改训练参数

数据集路径

model/utils/cli_helper.py路径下,修改

训练轮数

model/utils/cli_helper.py路径下,修改

3.2 训练

运行train.py文件

3.3 deeplabv3+训练

默认使用的是ENet作为backbone,如果要使用deeplabv3+结构训练

可以在model/utils/cli_helper.py路径下修改Model_type为DeepLabV3+,重新训练即可。

四、测试

4.1 修改测试参数

修改测试图片路径

model/utils/cli_helper_test.py路径下,修改

4.2 测试

运行test.py文件,在./test_output文件夹下查看测试结果

相关推荐
布谷鸟科技cookoo1 小时前
布谷鸟科技走进小鹏汽车,解构远程驾驶全栈解决方案
人工智能·科技·ai·自动驾驶·边缘计算·远程驾驶
数据与后端架构提升之路1 天前
实战:手搓一个“BEV 级”自动驾驶训练加速平台 —— 当 RTX 4090 遇上多模态数据
人工智能·机器学习·自动驾驶
Sanse_1 天前
Ubuntu18.04下面配置阿木实验室amov仿真系统Promethus的一系列运行环境
人工智能·机器人·自动驾驶
康谋自动驾驶1 天前
汽车多总线数据采集:挑战、架构与同步策略全解析
算法·自动驾驶·开发·数据处理·总线数据
Mr.Winter`1 天前
轨迹优化 | 微分动态规划DDP与迭代线性二次型调节器iLQR理论推导
人工智能·算法·机器人·自动驾驶·动态规划·ros·具身智能
国科安芯2 天前
无人驾驶物流车网关的多路CANFD冗余架构与通信可靠性分析
单片机·嵌入式硬件·性能优化·架构·自动驾驶·安全性测试
Ryan老房3 天前
自动驾驶数据标注-L4-L5级别的数据挑战
人工智能·目标检测·目标跟踪·自动驾驶
极智视界4 天前
目标检测数据集 - 自动驾驶场景车辆方向检测数据集下载
人工智能·目标检测·自动驾驶
yuanmenghao4 天前
车载Linux 系统问题定位方法论与实战系列 - OOM 与资源耗尽:系统是如何被“慢慢拖死”的
linux·运维·服务器·网络·驱动开发·自动驾驶