LaneNet(2):工程代码复现(pytorch版本)(15分钟上手)

一、下载代码

在github上开源的LaneNet项目数目较少,其中只有基于tensorflow 1.x的项目,这个是基于pytorch版本复现的。

github仓库:https://github.com/IrohXu/lanenet-lane-detection-pytorch

二、数据集准备

上面的代码工程中已经准备好了标注好的数据(只有6张),这里不需要额外准备。

如果想自己标注数据集,可参考我的另一篇文章:tusimple车道线检测 标注自己的数据集

如果想要训练大规模数据,可以前往https://github.com/TuSimple/tusimple-benchmark/issues/3下载公开数据集。

三、训练

3.1 修改训练参数

数据集路径

model/utils/cli_helper.py路径下,修改

训练轮数

model/utils/cli_helper.py路径下,修改

3.2 训练

运行train.py文件

3.3 deeplabv3+训练

默认使用的是ENet作为backbone,如果要使用deeplabv3+结构训练

可以在model/utils/cli_helper.py路径下修改Model_type为DeepLabV3+,重新训练即可。

四、测试

4.1 修改测试参数

修改测试图片路径

model/utils/cli_helper_test.py路径下,修改

4.2 测试

运行test.py文件,在./test_output文件夹下查看测试结果

相关推荐
ARM+FPGA+AI工业主板定制专家7 小时前
【JETSON+FPGA+GMSL】实测分享 | 如何实现激光雷达与摄像头高精度时间同步?
人工智能·数码相机·机器学习·fpga开发·机器人·自动驾驶
ARM+FPGA+AI工业主板定制专家8 小时前
Jetson AGX Orin+GMSL+AI视觉开发套件,支持自动驾驶,机器人,工业视觉等应用
人工智能·机器学习·fpga开发·机器人·自动驾驶
ARM+FPGA+AI工业主板定制专家11 小时前
【JETSON+FPGA+GMSL+AI】自动驾驶与移动机器人的摄像头如何实现高精度时间同步?
网络·人工智能·机器学习·fpga开发·cnn·自动驾驶
ARM+FPGA+AI工业主板定制专家12 小时前
基于JETSON+FPGA+GMSL相机 vs 传统工业相机:高动态范围与低延迟如何重塑机器感知视觉?
人工智能·数码相机·机器学习·自动驾驶
地平线开发者14 小时前
大模型 | VLM 初识及在自动驾驶场景中的应用
算法·自动驾驶
lihongli00016 小时前
CAN、ROS数据录制与rqt图形化显示
自动驾驶·ros·激光雷达
ARM+FPGA+AI工业主板定制专家1 天前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
BullSmall2 天前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
地平线开发者2 天前
手撕大模型 | MQA 和 GQA 原理解析
自动驾驶
地平线开发者2 天前
征程 6 | BPU trace 简介与实操
算法·自动驾驶