字体反爬之自动化通过字体文件生成映射字典

1、首先找到以.ttf结尾的字体文件,下载下来,以我的字体文件sfont.ttf为例

sont.ttf下载地址https://download.csdn.net/download/lingyingdon/89534953

目前只测试了.ttf文件。如果想使用woff字体文件,请自行测试

2、下载分割字体文件的软件fontforge, 安装后将安装路径添加到环境变量中去,该软件结合python脚本分割字体文件为单个字体图片及其对应的编码作为文件名

  • 官网地址如下

    https://fontforge.org/en-US/

  • python脚本如下split_font.py

    import os
    import argparse
    import sys
    
    import fontforge
    
    
    def main(font_path, folder):
        # 字体文件分割脚本,需要配合fontforge使用
        # font_path = r"F:\download\sfont.ttf"  # 字体文件路径
        # folder = "img"  # 字体文件分割后保存的目录
        F = fontforge.open(font_path)
        for name in F:
            filename = name + ".png"
            export_path = os.path.join(folder, filename)
            F[name].export(export_path)
            
    if __name__ == '__main__':
    
        parser = argparse.ArgumentParser(description='字体分割.....')
        parser.add_argument('-f', '--file_path', type=str, help='字体文件路径,字体文件为.ttf结尾')
        parser.add_argument('-d', '--dir', type=str, help='输出字体文件目录')
    
        args = parser.parse_args()
        if args.file_path and args.dir:
            main(args.file_path, args.dir)
        else:
            print("请输入字体文件路径和输出字体文件目录")
            sys.exit(1)
    
  • 通过执行以下命令脚本分割字体文件(前提是将fontforge添加到环境变量)

    fontforge split_font.py

  • 处理后的图片如下

3、由于分割后的字体文件相对比较模糊,通过使用pillow模块扩张字体图片大小来增加图片的清晰度

def strength_pic(pic_path):
    """
    图片增强
    猜想是,在进行卷积处理的时候,选择的算子在边界处理上更倾向于重新计算,而实际上我们的边界是不需要计算的,所以这里手动将边界扩张
    """

    old_im = Image.open(pic_path)
    old_size = old_im.size

    new_size = (300, 300)
    new_im = Image.new("RGB", new_size, color='white')  ## luckily, this is already black!
    new_im.paste(old_im, (int((new_size[0] - old_size[0]) / 2),
                          int((new_size[1] - old_size[1]) / 2)))

    new_im.save(pic_path.replace('img', 'img_output'))
  • 经过处理后的图片如下

4、使用ddddocr模块来识别字体图片

def ocr_img(ocr, file_path):
    """
    使用ddddocr模块识别
    :param ocr:  ddddocr实例化对象
    :param file_path:  图片文件路径
    :return:  识别结果
    """
    image = open(file_path, "rb").read()
    result = ocr.classification(image)
    return result

5、最后来看一下运行结果,全自动执行,不需要在一个一个整理字体字典了(我这里在代码中用&#x对uni进行了替换)

想要完整代码的联系fangyingdon@163.com

相关推荐
Tech Synapse6 小时前
Python网络爬虫实践案例:爬取猫眼电影Top100
开发语言·爬虫·python
数据小爬虫@7 小时前
利用Python爬虫获取淘宝店铺详情
开发语言·爬虫·python
坐公交也用券9 小时前
使用Python3实现Gitee码云自动化发布
运维·gitee·自动化
施努卡机器视觉11 小时前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
徐浪老师11 小时前
深入实践 Shell 脚本编程:高效自动化操作指南
运维·chrome·自动化
King's King11 小时前
自动化立体仓库:详解
运维·自动化
东隆科技11 小时前
晶圆测试中自动化上下料的重要性与应用
运维·自动化
B站计算机毕业设计超人13 小时前
计算机毕业设计SparkStreaming+Kafka新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
数据仓库·爬虫·python·数据分析·kafka·数据可视化·推荐算法
懒笑翻14 小时前
Python 使用 Selenuim进行自动化点击入门,谷歌驱动,以百度为例
运维·selenium·自动化
n***859414 小时前
Github 开源 10K Stars 自动化 API、后台作业、工作流和 UI 的开发平台
运维·自动化