线性回归求解

总成绩 XXX 和数学成绩 YYY 数据如下:

1 求数学成绩对总成绩的回归方程。

2 如果一个学生总成绩是450,求该学生的数学成绩。

这个基本上算是目前机器学习的基石了,说起来也算是高中的知识范围,我不知道是不是人人都懂了,我觉得我不是很懂,所以专门写一篇来总结总结。。。

回归方程是Y=a+bX。所以现在要求的就是截距a和回归系数b。

首先计算平均值:

然后计算回归系数b

计算截距a

所以方程是:

Y=14.49+0.1325X

那么第二个问题也很好解了。代入总成绩 X=450X = 450X=450,Y = 14.49+0.1325×450=14.49+59.625=74.115。

上面的过程基本不算难,就是回归系数的推算,看了下是最小二乘法。

然后推断出上面的回归系数公式。

对了,再提一嘴,两个点求函数怎么求呢?这个初中知识。。。

斜率b = (y2 - y1)/(x2 - x1)

截距a = y - ax(任意一个点都行)

在现代计算机中,这部分都是改成矩阵运算了(所以最早搞游戏矩阵运算的老黄接下了这个泼天富贵。。。)

其中,XXX 是自变量矩阵,YYY 是因变量向量。

这里面具体的算法容我后面再看看。。。

再说说最小二乘法,其实这个翻译真的很有问题,弯弯那边翻译成最小平方法,我觉得很贴切。一张图就可以看到这个的本质

本质就是使得绿线的平方和最小,那么这个曲线就是最优。为什么用平方不用绝对值呢?据说原因有二。1是平方计算可导,更加方便。2是用平方可以放大误差,这样计算效果更好。

所以最小二乘法通过最小化以下目标函数来找到最佳拟合直线,基本就是算=0的情况。

最后再早说说最小二乘法和梯度下降算法。

最小二乘法和梯度下降算法在目标和应用上有所区别,理解它们的关系和差异,有助于选择合适的方法解决具体问题。最小二乘法适用于简单线性回归和小数据集,而梯度下降则更灵活,适用于复杂和大规模数据集。

简而言之,就是最小二乘法只能用在简单的场景。复杂的还是只能用梯度下降。。。

参考:

最小二乘法

相关推荐
小猿_0013 分钟前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
小兜全糖(xdqt)36 分钟前
python中单例模式
开发语言·python·单例模式
Python数据分析与机器学习1 小时前
python高级加密算法AES对信息进行加密和解密
开发语言·python
noravinsc1 小时前
python md5加密
前端·javascript·python
唯余木叶下弦声1 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
程序媛徐师姐1 小时前
Python基于Django的社区爱心养老管理系统设计与实现【附源码】
python·django·社区爱心养老·社区爱心养老管理系统·python社区养老管理系统·社区养老·社区养老管理系统
叫我:松哥2 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
Le0v1n2 小时前
VSCode注释高亮(# NOTE;# TODO;# FIXME;#XXX;# HACK;# BUG)
ide·vscode·python
熊文豪2 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
冰万森3 小时前
【图像处理】——掩码
python·opencv·计算机视觉