对B-树的理解

目录

前言-为什么要使用B-树?

首先,我们正常的搜索都有一下方式:

  1. 搜索二叉树,极端场景下会退化,类似于单支,此时的效率变成了O(N);
  2. 为了解决1的问题,提出了平衡树的概念,左右子树的高度差不大于1,AVL树,红黑树。该效率为O(logN),其中map/set就是由此构建的;
  3. 更好的搜索结构则有哈希/散列表,该效率为O(1),--unordered_map/unordered_set
  4. 跳表、字典树

上面的结构都是完成内存中数据的搜索查找问题

但假设此时的数据量很多 ,在内存中存放不下,数据要存到磁盘中,上面的数据结构就不好了,虽然可以把内存在磁盘的地址使用AVL树来存储,查找的时间复杂度为O(logN),但是该复杂度在内存中访问非常快,在磁盘中,logN次磁盘IO访问会非常慢。 如果换成哈希表,变成O(1),在极端情况下,哈希表冲突十分厉害,一个桶中数据太多,会影响效率,并且哈希表中存在很多附带数据(表结构、节点中的指针等),数据量很大时,内存占用很多。B树则能解决这些问题。

B-树概念

B树是一种平衡的多叉树,一颗M阶(M>2)的B树,为平衡的M路平衡搜索树,可以是空树或者满足以下性质:

  1. 根节点至少有两个孩子
  2. 每个非根节点至少有M/2(向上取整)个孩子,至多有M个孩子
  3. 每个非根节点至少有M/2-1(向上取整)个关键字,至多有M-1个关键字,并且以升序排列
  4. key(1)和key(i+1)之间的孩子节点的值介于key[i]、key[i+1]之间
  5. 所有的叶子节点都在同一层

对上述性质进行总结来说:

根节点:关键字数量[1,M-1],孩子数量[2,M]

非根节点:关键字数量[M/2-1, M-1],孩子数量[M/2,M]

每个节点中,孩子的数量比关键字的数量永远要多一个

那么为什么会有这样的性质呢?结合例子来进行理解
针对根节点的数量范围分析

首先,一个关键字会有两个孩子(左孩子和右孩子),其中和相邻的关键字会共有一个孩子,即关键字1的右孩子也是关键字2的左孩子,那么孩子的数量就会比关键字的数量多一个。

针对非根节点的数量范围分析

假设M等于3,那么根节点的关键字数量最多只能放2个,如果放到了3个,则违反了规则,根节点最多存M-1个关键字,那么就会进行分裂,创建一个兄弟节点,右边M/2的值拷贝到兄弟节点中,中间值插入到父亲,如果没有父亲,则创建新的父亲,该值作为新的根。也就是上图右下角的节点,关键字70超出范围,则进行分裂,将70分裂为兄弟节点,50插入到父亲节点。

那么为什么分裂的时候要提中位数插入到父亲呢?

因为分裂新增一个兄弟节点,对于父亲而言,多了一个孩子,还得多一个关键字,这样才能保持孩子的数量比关键字数量多一个。

结合分裂的思想:

如果M是奇数,分裂时两边数量为M/2,中间值插入到父亲。(比如M=9,左右各为4,剩余的一个节点插入到父亲,如果没有父亲则创建)

如果M是偶数,因为两边要有一个需要插入到父亲,因此总有一边要少一个,一边是M/2,一边是M/2-1。(比如M=10,左右为5和4或者4和5,剩余一个插入到父亲,如果没有父亲则创建)

相关推荐
xiaoye-duck2 小时前
数据结构之排序-选择排序&交换排序
数据结构·排序算法
小此方2 小时前
笔记:树。
数据结构·笔记
hweiyu002 小时前
数据结构:链表
数据结构·链表
前端小L3 小时前
图论专题(十八):“逆向”拓扑排序——寻找图中的「最终安全状态」
数据结构·算法·安全·深度优先·图论·宽度优先
小年糕是糕手5 小时前
【C++】C++入门 -- inline、nullptr
linux·开发语言·jvm·数据结构·c++·算法·排序算法
聆风吟º6 小时前
【数据结构入门手札】算法核心概念与复杂度入门
数据结构·算法·复杂度·算法的特性·算法设计要求·事后统计方法·事前分析估算方法
vir027 小时前
密码脱落(最长回文子序列)
数据结构·c++·算法
福尔摩斯张7 小时前
二维数组详解:定义、初始化与实战
linux·开发语言·数据结构·c++·算法·排序算法
Samuel-Gyx7 小时前
数据结构--二叉树构造与遍历顺序的相互转化
数据结构
未若君雅裁7 小时前
斐波那契数列 - 动态规划实现 详解笔记
java·数据结构·笔记·算法·动态规划·代理模式