deep learning 环境配置

1 NVIDIA驱动安装

ref link: https://blog.csdn.net/weixin_37926734/article/details/123033286

2 cuda安装

ref link: https://blog.csdn.net/qq_63379469/article/details/123319269

进去网站 https://developer.nvidia.com/cuda-toolkit-archive 选择想要安装的cuda版本

安装过程:

(1)分别选择continue与输入accept

(2)最重要的是在选择CUDA Installer时,要把Driver这一项取消掉([]中是空的表示没有选择安装这项,[x]表示有安装这项),因为第一步已经安装过NVIDIA驱动了

(3)在zshrc或者bashrc中添加cuda bin和lib的path

bash 复制代码
###########cuda################
export PATH="/usr/local/cuda-11.1/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH"

3 安装anaconda

第一步:下载 https://www.anaconda.com/download

bash 复制代码
# 第二步:安装
./Anaconda3-2024.02-1-Linux-x86_64.sh

# 第三步:修改bashrc或者zshrc的快捷命令,注意替换username。这样在终端输出aconda就会进入conda环境,而不用频繁注释bashrc中的代码
function aconda {
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
    __conda_setup="$('/home/username/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
    if [ $? -eq 0 ]; then
        eval "$__conda_setup"
    else
        if [ -f "/home/username/anaconda3/etc/profile.d/conda.sh" ]; then
            . "/home/username/anaconda3/etc/profile.d/conda.sh"
        else
            export PATH="/home/username/anaconda3/bin:$PATH"
        fi
    fi
    unset __conda_setup
# <<< conda initialize <<<
}

# 第四步:修改源
# 删除以前的镜像,恢复默认状态
conda config --remove-key channels

# 添加源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

# 显示检索路径
conda config --set show_channel_urls yes
# 显示镜像通道
conda config --show channels

4 配置deep learning环境:以maptracker为例

查看maptracker readme,可以看到

bash 复制代码
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

其中对于cuda的要求的11.1版本,所以需要按照这个版本要求安装下cuda,同时记得在bashrc中修改cuda bin、lib的path

pytorch和cuda版本对应关系:https://pytorch.org/get-started/previous-versions/

然后安装其他依赖

bash 复制代码
# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6 
pip install -e .


pip install -r requirements.txt
相关推荐
白熊1881 分钟前
【论文精读】Transformer: Attention Is All You Need 注意力机制就是一切
人工智能·深度学习·transformer
ELI_He9993 分钟前
CLIP-ReID初尝试
人工智能·深度学习
SACKings9 分钟前
神经元是什么?在深度学习中的数学表达是什么?
人工智能·深度学习
Coovally AI模型快速验证13 分钟前
复杂工业场景如何实现3D实例与部件一体化分割?多视角贝叶斯融合的分层图像引导框
人工智能·深度学习·计算机视觉·3d·语言模型·机器人
CoovallyAIHub17 分钟前
下一代驾驶员监测系统如何工作?视觉AI接管驾驶舱
深度学习·算法·计算机视觉
怎么全是重名1 小时前
Survey on semantic segmentation using deep learning techniques
图像处理·人工智能·深度学习·图像分割
YuforiaCode1 小时前
黑马AI大模型神经网络与深度学习课程笔记(个人记录、仅供参考)
人工智能·笔记·深度学习
深度学习实战训练营1 小时前
nnU-Net:基于unet的医学图像分割自适应框架,自动配置超参数与结构-k学长深度学习专栏
人工智能·深度学习
lybugproducer1 小时前
深度学习专题:模型训练的张量并行(一)
人工智能·深度学习·transformer
油泼辣子多加1 小时前
【信创】中间件对比
人工智能·深度学习·算法·中间件