微调及代码

一、微调:迁移学习 (transfer learning)将从源数据集 学到的知识迁移到目标数据集

二、步骤

1、在源数据集(例如ImageNet数据集)上预训练神经网络模型,即源模型

2、创建一个新的神经网络模型,即目标模型。这将复制源模型上的所有模型设计及其参数(输出层除外)。

3、向目标模型添加输出层,其输出数是目标数据集中的类别数。然后随机初始化该层的模型参数。

4、在目标数据集(如椅子数据集)上训练目标模型。输出层将从头开始进行训练,而所有其他层的参数将根据源模型的参数进行微调。

5、目标数据集比源数据集小得多时,微调有助于提高模型的泛化能力。就相当于在别人训练好的基础上训练

三、网络架构:神经网络一般分为两块:特征抽取(将原始像素变成容易线性分割的特征)和线性分类器

四、训练

1、微调是在目标数据集上的正常训练任务,但使用更强的正则化(有更强的lr和更少的epoch)

2、源数据集远复杂于目标数据,通常微调效果会更好

3、源数据集中可能也有目标数据中的部分标号

4、固定底层训练高层

五、总结

1、迁移学习将从源数据集中学到的知识迁移到目标数据集,微调是迁移学习的常见技巧。

2、除输出层外,目标模型从源模型中复制所有模型设计及其参数,并根据目标数据集对这些参数进行微调。但是,目标模型的输出层需要从头开始训练。

3、通常,微调参数使用较小的学习率,而从头开始训练输出层可以使用更大的学习率。

六、代码

1、导入数据

复制代码
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
复制代码
# 使用RGB通道的均值和标准差,以标准化每个通道
normalize = torchvision.transforms.Normalize(
    [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    normalize])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize([256, 256]),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    normalize])

2、定义和初始化模型

复制代码
pretrained_net = torchvision.models.resnet18(pretrained=True)

finetune_net = torchvision.models.resnet18(pretrained=True)
#最后一层类别为2
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight);

3、微调模型

复制代码
# 如果param_group=True,输出层中的模型参数将使用十倍的学习率
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
                      param_group=True):
    train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train'), transform=train_augs),
        batch_size=batch_size, shuffle=True)
    test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'test'), transform=test_augs),
        batch_size=batch_size)
    devices = d2l.try_all_gpus()
    loss = nn.CrossEntropyLoss(reduction="none")
    if param_group:
        params_1x = [param for name, param in net.named_parameters()
             if name not in ["fc.weight", "fc.bias"]]
        trainer = torch.optim.SGD([{'params': params_1x},
                                   {'params': net.fc.parameters(),
                                    'lr': learning_rate * 10}],
                                lr=learning_rate, weight_decay=0.001)
    else:
        trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
                                  weight_decay=0.001)
    d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
                   devices)
相关推荐
咚咚王者24 分钟前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习
g***B7382 小时前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构
Shawn_Shawn5 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
weixin_377634846 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing7 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi7 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
ZZY_dl7 小时前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d8 小时前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心8 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
鲨莎分不晴8 小时前
强化学习第五课 —— A2C & A3C:并行化是如何杀死经验回放
网络·算法·机器学习