昇思25天打卡营-mindspore-ML- Day24-基于 MindSpore 实现 BERT 对话情绪识别

学习笔记:基于MindSpore实现BERT对话情绪识别

算法原理

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发的一种预训练语言表示模型。BERT的核心原理是通过在大量文本上预训练深度双向表示,从而捕捉丰富的语言特征。BERT模型采用了Transformer中的Encoder结构,并引入了Masked Language Model(MLM)和Next Sentence Prediction(NSP)两种任务来增强模型的语言理解能力。

  1. Masked Language Model (MLM):在训练时,随机选择一部分单词并将其替换为特殊的[Mask]标记,模型需要预测这些被掩盖的单词。
  2. Next Sentence Prediction (NSP):模型需要判断两个句子是否是顺序的关系。

BERT预训练完成后,可以对下游任务进行Fine-tuning,如文本分类、问答系统等。

算法应用范围

BERT模型广泛应用于自然语言处理的多个领域,包括但不限于:

  • 文本分类
  • 问答系统
  • 命名实体识别
  • 情感分析
  • 机器翻译

这里BERT被应用于对话情绪识别(Emotion Detection),即识别文本中的情绪倾向,如积极、消极和中性。

代码实现步骤

  1. 环境配置:安装MindSpore和mindnlp库,确保版本兼容。
  2. 数据准备:下载并解压数据集,数据集是经过分词预处理的机器人聊天数据,包含情绪标签和对应的文本。
  3. 数据预处理 :定义SentimentDataset类来加载和处理数据,将文本转换为模型可接受的格式。
  4. 模型构建 :使用BertForSequenceClassification构建BERT模型,加载预训练权重,并设置为三分类问题。
  5. 训练配置:设置自动混合精度来加速训练,定义优化器和评价指标。
  6. 训练过程:实例化训练器,开始训练过程,并在每个epoch后保存模型的checkpoint。
  7. 模型评估:使用验证集对模型进行评估,记录准确率。
  8. 模型推理:加载最佳模型,对测试集或自定义数据进行情绪预测。

数据集内容

数据集由百度飞桨团队提供,包含已标注的机器人聊天数据,数据格式为两列,用制表符分隔:

  • 第一列:情绪分类的类别(0表示消极;1表示中性;2表示积极)
  • 第二列:以空格分词的中文文本

数据集包含训练集、验证集、测试集和推理集,文件分别为train.tsvdev.tsvtest.tsvinfer.tsv

总结

本文档给出了BERT模型的原理和应用,以及如何使用MindSpore框架实现对话情绪识别任务。从数据准备到模型训练、评估和推理,整个过程提供了一个完整的机器学习项目实践。

相关推荐
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr2 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20243 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘