OpenCV 轮廓检测

在 OpenCV 中,轮廓检测是一种用于查找图像中具有相似颜色或强度的连通像素组的技术,这些像素组通常代表了图像中的物体边缘。轮廓可以用来识别和分割图像中的物体,是计算机视觉应用中的一个重要步骤,如目标识别、形状分析等。

轮廓检测的基本步骤包括:

预处理:

将彩色图像转换为灰度图像(如果图像不是灰度的)。

应用阈值处理或边缘检测算法(如Canny边缘检测)将图像转换为二值图像,以便更清晰地突出物体和背景之间的差异。

轮廓发现:

使用cv2.findContours()函数来找到图像中的所有轮廓。此函数需要一个二值图像作为输入。

函数的两个主要参数是轮廓检索模式(mode)和轮廓近似方法(method)。

轮廓近似:

cv2.findContours()函数返回轮廓的列表,以及它们之间的层次关系(如果检索模式允许的话)。

每个轮廓是一个由点构成的Numpy数组,这些点定义了轮廓的边界。

轮廓绘制:

使用cv2.drawContours()函数可以在原图上绘制出找到的轮廓,这对于可视化轮廓很有帮助。

以下是一个基本的轮廓检测的 Python 代码示例:

python 复制代码
# -*- coding: utf-8 -*-
# @Author : 小红牛
# 微信公众号:WdPython
import cv2
import numpy as np

# 读取图像
image = cv2.imread('path_to_your_image.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用二值化
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 找到轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

# 显示结果
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,cv2.RETR_TREE表示要检索所有轮廓并构建完整的层次结构,而cv2.CHAIN_APPROX_SIMPLE则用于压缩水平、垂直和对角方向上的连续点,仅保留端点。

完毕!!感谢您的收看

----------★★历史博文集合★★----------

我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame

相关推荐
锋行天下1 天前
公司内网部署大模型的探索之路
前端·人工智能·后端
quikai19811 天前
python练习第二组
开发语言·python
熊猫_豆豆1 天前
python 用手势控制程序窗口文字大小
python·手势识别
测试秃头怪1 天前
2026最新软件测试面试八股文(含答案+文档)
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
LUU_791 天前
Day29 异常处理
python
子夜江寒1 天前
Python 学习-Day8-执行其他应用程序
python·学习
背心2块钱包邮1 天前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水1 天前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊1 天前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘1 天前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能