OpenCV 轮廓检测

在 OpenCV 中,轮廓检测是一种用于查找图像中具有相似颜色或强度的连通像素组的技术,这些像素组通常代表了图像中的物体边缘。轮廓可以用来识别和分割图像中的物体,是计算机视觉应用中的一个重要步骤,如目标识别、形状分析等。

轮廓检测的基本步骤包括:

预处理:

将彩色图像转换为灰度图像(如果图像不是灰度的)。

应用阈值处理或边缘检测算法(如Canny边缘检测)将图像转换为二值图像,以便更清晰地突出物体和背景之间的差异。

轮廓发现:

使用cv2.findContours()函数来找到图像中的所有轮廓。此函数需要一个二值图像作为输入。

函数的两个主要参数是轮廓检索模式(mode)和轮廓近似方法(method)。

轮廓近似:

cv2.findContours()函数返回轮廓的列表,以及它们之间的层次关系(如果检索模式允许的话)。

每个轮廓是一个由点构成的Numpy数组,这些点定义了轮廓的边界。

轮廓绘制:

使用cv2.drawContours()函数可以在原图上绘制出找到的轮廓,这对于可视化轮廓很有帮助。

以下是一个基本的轮廓检测的 Python 代码示例:

python 复制代码
# -*- coding: utf-8 -*-
# @Author : 小红牛
# 微信公众号:WdPython
import cv2
import numpy as np

# 读取图像
image = cv2.imread('path_to_your_image.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用二值化
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 找到轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

# 显示结果
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,cv2.RETR_TREE表示要检索所有轮廓并构建完整的层次结构,而cv2.CHAIN_APPROX_SIMPLE则用于压缩水平、垂直和对角方向上的连续点,仅保留端点。

完毕!!感谢您的收看

----------★★历史博文集合★★----------

我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame

相关推荐
狂炫冰美式7 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元7 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI8 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
BBB努力学习程序设计8 小时前
Python面向对象编程:从代码搬运工到架构师
python·pycharm
操练起来8 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
rising start8 小时前
五、python正则表达式
python·正则表达式
KG_LLM图谱增强大模型8 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网8 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp8 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
BBB努力学习程序设计8 小时前
Python错误处理艺术:从崩溃到优雅恢复的蜕变
python·pycharm