大语言模型的原理

大语言模型(Large Language Models, LLMs)是深度学习领域的一个重要分支,它们通过大规模的文本数据训练,能够理解和生成人类语言。这些模型通常基于Transformer架构,具有以下核心组件和原理:

Transformer架构

自注意力机制(Self-Attention):允许模型在处理序列数据时关注输入序列中的不同部分,以捕捉长距离依赖关系。

多头注意力(Multi-Head Attention):将注意力机制分解成多个独立的注意力头,每个头可以关注不同的信息方面。

前馈神经网络(Feed Forward Network):用于对每个位置的输出进行非线性变换。

层归一化(Layer Normalization):帮助加速训练过程和提高模型性能。

残差连接(Residual Connections):绕过潜在的梯度消失问题,使模型能够训练更深的网络结构。

编码与解码

编码器(Encoder):将输入文本转换为内部表示。

解码器(Decoder):根据编码器的输出生成新的文本序列。

训练技术

预训练(Pre-training):在大量未标记文本上进行无监督训练,学习通用的语言表示。

微调(Fine-tuning):在特定任务或领域的小规模标注数据集上进一步训练模型,以适应具体任务需求。

混合精度训练(Mixed Precision Training):使用较低精度的数据类型(如FP16)来加速训练,同时保持足够的精度。

激活重计算(Activation Recomputation):在反向传播过程中重新计算激活值,以节省内存。

Flash Attention 和 Paged Attention:高效地处理长序列的注意力计算,减少计算资源消耗。

分布式训练

数据并行(Data Parallelism):将数据集分割到多个GPU上,每个GPU处理一部分数据。

张量模型并行(Tensor Model Parallelism):将模型权重分割到不同的GPU上。

流水线并行(Pipeline Parallelism):将模型的层分布在不同的GPU上,按顺序传递数据。

3D并行(3D Parallelism):结合数据并行、张量并行和流水线并行。

零冗余优化器ZeRO 和 ZeRO-offload:通过优化存储和计算来减少训练过程中的内存消耗。

参数高效微调技术

Prompt Tuning:通过调整输入提示(prompt)来引导模型生成特定的输出,而无需修改模型参数。

Prefix Tuning:只微调模型输入的前缀部分,而不是整个模型。

Adapter 和 LLaMA-Adapter:在模型的每一层添加轻量级的适配器模块,仅对这些模块进行微调。

LoRA(Low-Rank Adaptation):通过低秩矩阵来更新模型权重,实现参数高效微调。

结语

这些技术和原理共同构成了现代大语言模型的基础,使得模型能够在各种自然语言处理任务上表现出色。

相关推荐
我不是QI15 分钟前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来27 分钟前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型43 分钟前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网1 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp1 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48411 小时前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元1 小时前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛2 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
Learn Beyond Limits2 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
shmexon2 小时前
上海兆越亮相无锡新能源盛会,以硬核通信科技赋能“能碳未来”
网络·人工智能