17098 广告牌最佳安放问题

这个问题可以通过动态规划来解决。我们可以定义一个数组d,其中d[i]表示到第i个广告牌地点时可以选择放置广告牌的最大效益值。然后我们可以通过遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

以下是解题步骤:

  1. 初始化数组:首先,我们需要初始化一个数组d,并将d[1]设置为r[1]。

  2. 动态规划:然后,我们可以使用动态规划来更新d数组。对于每一个i(i > 1),我们可以遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

  3. 输出结果:最后,d[n]就是我们要求的最大效益值。

以下是使用C++实现的代码:

cpp 复制代码
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 100001;
int x[MAXN], r[MAXN], d[MAXN];

int main() {
    int M, n;
    cin >> M >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> x[i];
    }
    for (int i = 1; i <= n; ++i) {
        cin >> r[i];
    }
    d[1] = r[1];
    for (int i = 2; i <= n; ++i) {
        d[i] = d[i - 1];
        for (int j = 1; j < i; ++j) {
            if (x[i] - x[j] > 5) {
                d[i] = max(d[i], d[j] + r[i]);
            }
        }
    }
    cout << d[n] << endl;
    return 0;
}

这段代码首先读取公路长度和广告牌的总数,然后读取每个广告牌的位置和收益。然后,它使用动态规划的方法来计算最大的收益。最后,它输出最大的收益。

相关推荐
ShineWinsu3 小时前
对于C++:类和对象的解析—下(第二部分)
c++·面试·笔试·对象··工作·stati
码农水水3 小时前
国家电网Java面试被问:TCP的BBR拥塞控制算法原理
java·开发语言·网络·分布式·面试·wpf
2013092416273 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
如何原谅奋力过但无声3 小时前
【力扣-Python-滑动窗口经典题】567.字符串的排列 | 424.替换后的最长重复字符 | 76.最小覆盖子串
算法·leetcode
浮尘笔记3 小时前
Go语言临时对象池:sync.Pool的原理与使用
开发语言·后端·golang
咕噜咕噜啦啦4 小时前
Java期末习题速通
java·开发语言
BHXDML4 小时前
第七章:类与对象(c++)
开发语言·c++
玄冥剑尊4 小时前
贪心算法进阶
算法·贪心算法
玄冥剑尊4 小时前
贪心算法深化 I
算法·贪心算法
52Hz1184 小时前
力扣73.矩阵置零、54.螺旋矩阵、48.旋转图像
python·算法·leetcode·矩阵