17098 广告牌最佳安放问题

这个问题可以通过动态规划来解决。我们可以定义一个数组d,其中d[i]表示到第i个广告牌地点时可以选择放置广告牌的最大效益值。然后我们可以通过遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

以下是解题步骤:

  1. 初始化数组:首先,我们需要初始化一个数组d,并将d[1]设置为r[1]。

  2. 动态规划:然后,我们可以使用动态规划来更新d数组。对于每一个i(i > 1),我们可以遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

  3. 输出结果:最后,d[n]就是我们要求的最大效益值。

以下是使用C++实现的代码:

cpp 复制代码
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 100001;
int x[MAXN], r[MAXN], d[MAXN];

int main() {
    int M, n;
    cin >> M >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> x[i];
    }
    for (int i = 1; i <= n; ++i) {
        cin >> r[i];
    }
    d[1] = r[1];
    for (int i = 2; i <= n; ++i) {
        d[i] = d[i - 1];
        for (int j = 1; j < i; ++j) {
            if (x[i] - x[j] > 5) {
                d[i] = max(d[i], d[j] + r[i]);
            }
        }
    }
    cout << d[n] << endl;
    return 0;
}

这段代码首先读取公路长度和广告牌的总数,然后读取每个广告牌的位置和收益。然后,它使用动态规划的方法来计算最大的收益。最后,它输出最大的收益。

相关推荐
草莓熊Lotso8 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
傻乐u兔8 小时前
C语言进阶————指针4
c语言·开发语言
大模型玩家七七8 小时前
基于语义切分 vs 基于结构切分的实际差异
java·开发语言·数据库·安全·batch
历程里程碑8 小时前
Linux22 文件系统
linux·运维·c语言·开发语言·数据结构·c++·算法
牛奔9 小时前
Go 如何避免频繁抢占?
开发语言·后端·golang
寻星探路13 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
lly20240615 小时前
Bootstrap 警告框
开发语言
2601_9491465315 小时前
C语言语音通知接口接入教程:如何使用C语言直接调用语音预警API
c语言·开发语言
你撅嘴真丑15 小时前
第九章-数字三角形
算法
曹牧15 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言