17098 广告牌最佳安放问题

这个问题可以通过动态规划来解决。我们可以定义一个数组d,其中d[i]表示到第i个广告牌地点时可以选择放置广告牌的最大效益值。然后我们可以通过遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

以下是解题步骤:

  1. 初始化数组:首先,我们需要初始化一个数组d,并将d[1]设置为r[1]。

  2. 动态规划:然后,我们可以使用动态规划来更新d数组。对于每一个i(i > 1),我们可以遍历所有可能的j(1 <= j <= i && x[i] - x[j] > 5),然后更新d[i]为max(d[i-1], d[j] + r[i])。

  3. 输出结果:最后,d[n]就是我们要求的最大效益值。

以下是使用C++实现的代码:

cpp 复制代码
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 100001;
int x[MAXN], r[MAXN], d[MAXN];

int main() {
    int M, n;
    cin >> M >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> x[i];
    }
    for (int i = 1; i <= n; ++i) {
        cin >> r[i];
    }
    d[1] = r[1];
    for (int i = 2; i <= n; ++i) {
        d[i] = d[i - 1];
        for (int j = 1; j < i; ++j) {
            if (x[i] - x[j] > 5) {
                d[i] = max(d[i], d[j] + r[i]);
            }
        }
    }
    cout << d[n] << endl;
    return 0;
}

这段代码首先读取公路长度和广告牌的总数,然后读取每个广告牌的位置和收益。然后,它使用动态规划的方法来计算最大的收益。最后,它输出最大的收益。

相关推荐
D_evil__6 小时前
【Effective Modern C++】第三章 转向现代C++:16. 让const成员函数线程安全
c++
微风中的麦穗6 小时前
【MATLAB】MATLAB R2025a 详细下载安装图文指南:下一代科学计算与工程仿真平台
开发语言·matlab·开发工具·工程仿真·matlab r2025a·matlab r2025·科学计算与工程仿真
2601_949146536 小时前
C语言语音通知API示例代码:基于标准C的语音接口开发与底层调用实践
c语言·开发语言
开源技术6 小时前
Python Pillow 优化,打开和保存速度最快提高14倍
开发语言·python·pillow
学嵌入式的小杨同学6 小时前
从零打造 Linux 终端 MP3 播放器!用 C 语言实现音乐自由
linux·c语言·开发语言·前端·vscode·ci/cd·vim
wfeqhfxz25887827 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
Aaron15887 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
觅特科技-互站7 小时前
陌讯视觉‘动态密度流’模型:亚运场馆到前海政务厅,98.6%聚众事件5秒精准定位|技术拆解+SDK实录
逻辑回归·动态规划
Queenie_Charlie7 小时前
前缀和的前缀和
数据结构·c++·树状数组
mftang8 小时前
Python 字符串拼接成字节详解
开发语言·python