机体坐标系和导航坐标系

目录

机体坐标系(Body Frame)和导航坐标系(Navigation Frame)是惯性导航系统(INS)中常用的两个坐标系,用于描述物体的姿态、速度和位置。下面通过具体例子来说明这两个坐标系的含义和区别。

机体坐标系(Body Frame)

机体坐标系是固定在运动物体上的坐标系。通常情况下,定义如下:

  • X轴:沿着机体的前方(向前)。
  • Y轴:沿着机体的右侧(向右)。
  • Z轴:沿着机体的下方(向下)。

例子:无人机的机体坐标系

对于一架无人机,机体坐标系可以这样定义:

X轴:指向无人机的前方。

Y轴:指向无人机的右侧。

Z轴:指向无人机的下方。(高度)

在这个坐标系中,无人机的加速度、角速度和其他传感器数据都是相对于机体本身的方向进行测量的。

导航坐标系(Navigation Frame)

导航坐标系是固定在地面或惯性空间的坐标系,用于描述物体在全局坐标中的位置和运动状态。通常情况下,定义如下:

  • X轴:指向北方(N)。 (刻度表示地球维度)
  • Y轴:指向东方(E)。 (刻度表示地球经度)
  • Z轴:指向地心(D)(对于NEU坐标系,Z轴指向天顶(U))。

例子:地球固定的导航坐标系

对于一架无人机在地球表面飞行时,导航坐标系可以这样定义:

X轴:指向地理北极。

Y轴:指向地理东。

Z轴:指向地心(对于NED坐标系)。

在这个坐标系中,无人机的位置信息、速度信息都是相对于地球固定坐标系来描述的。

具体例子说明

假设我们有一架无人机正在飞行,我们需要描述其当前的姿态和运动状态。

机体坐标系描述

在无人机的机体坐标系中,我们测量得到以下数据:

  • 加速度: a b = [ 0.1 , 0.2 , − 9.7 ] m / s 2 \mathbf{a}_b=[0.1,0.2,-9.7] \mathrm{m} / \mathrm{s}^2 ab=[0.1,0.2,−9.7]m/s2
  • 角速度:" ω b = [ 0.01 , 0.02 , 0.03 ] r a d / s \boldsymbol{\omega}_b=[0.01,0.02,0.03] \mathrm{rad} / \mathrm{s} ωb=[0.01,0.02,0.03]rad/s

文些数据表示在机体坐标系中,无人机前方有 0.1 m / s 2 0.1 \mathrm{~m} / \mathrm{s}^2 0.1 m/s2 的加速度,右侧有 0.2 m / s 2 0.2 \mathrm{~m} / \mathrm{s}^2 0.2 m/s2 的加速度,下方有 9.7 m / s 2 9.7 \mathrm{~m} / \mathrm{s}^2 9.7 m/s2 的加速度(由于重力作用)。角速度表示绕前方轴 0.01 r a d / s 0.01 \mathrm{rad} / \mathrm{s} 0.01rad/s ,绕右侧轴 0.02 r a d / s 0.02 \mathrm{rad} / \mathrm{s} 0.02rad/s ,绕下方由 0.03 r a d / s 0.03 \mathrm{rad} / \mathrm{s} 0.03rad/s 的旋转。

导航坐标系描述

通过惯性导航算法,我们可以将上述机体坐标系中的数据转换到导航坐标系中。例如,转换后的加速度和角速度在导航坐标系中表示为:

  • 加速度: a n = [ 0.1 , 0.0 , − 9.8 ] \mathbf{a}_n=[0.1,0.0,-9.8] an=[0.1,0.0,−9.8] m/s2
  • 角速度: ω n = [ 0.0 , 0.02 , 0.03 ] \boldsymbol{\omega}_n=[0.0,0.02,0.03] ωn=[0.0,0.02,0.03] rad/s

这些数据表示在导航坐标系中,无人机向北有 0.1 m / s 2 0.1 \mathrm{~m} / \mathrm{s}^2 0.1 m/s2 的加速度,向东没有加速度,向地心有 9.8 m / s 2 9.8 \mathrm{~m} / \mathrm{s}^2 9.8 m/s2 的加速度 (主要是重力)。角速度表示绕北轴没有旋转,绕东轴 0.02 r a d / s 0.02 \mathrm{rad} / \mathrm{s} 0.02rad/s 的旋转,绕地心轴 0.03 r a d / s 0.03 \mathrm{rad} / \mathrm{s} 0.03rad/s 的旋转。

总结

机体坐标系 :固定在无人机上的坐标系,用于描述相对于机体的运动和姿态。
导航坐标系:固定在地球上的坐标系,用于描述无人机在全局中的位置和运动状态。

两者之间的转换依赖于姿态估计(例如使用方向余弦矩阵或四元数),从而将机体坐标系中的测量值转换到导航坐标系中进行导航和控制。

相关推荐
sindyra5 小时前
Unity资源内存管理与释放
unity·游戏引擎·资源管理·资源释放·内存释放
CreasyChan5 小时前
Unity FairyGUI高斯模糊实现方法
unity·游戏引擎·fgui
avi91116 小时前
Unity半官方的AssetBundleBrowser插件说明+修复+Reporter插件
unity·游戏引擎·打包·assetbundle·游戏资源
一个笔记本16 小时前
godot log | 修改main scene
游戏引擎·godot
nnsix18 小时前
Unity PicoVR开发 实时预览Unity场景 在Pico设备中(串流)
unity·游戏引擎
一只一只1 天前
Unity之UGUI Button按钮组件详细使用教程
unity·游戏引擎·ugui·button·ugui button
神米米1 天前
Maya快速安装UE4 布料权重绘制插件PhysX导出apx
游戏引擎·ue4·maya
WarPigs1 天前
Unity阴影
unity·游戏引擎
深蓝学院1 天前
完全端到端闭环导航!仅需相机,LoGoPlanner实现感知定位规划一体化
机器人·导航·端到端·具身智能
一只一只1 天前
Unity之Invoke
unity·游戏引擎·invoke