多类支持向量机损失(SVM损失)

(SVM) 损失。SVM 损失的设置是,SVM"希望"每个图像的正确类别的得分比错误类别高出一定幅度Δ。

即假设有一个分数集合s=[13,−7,11]

如果y0为真实值,超参数为10,则该损失值为

超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化

c 复制代码
def L_i(x, y, W):
  """
  unvectorized version. Compute the multiclass svm loss for a single example (x,y)
  - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)
    with an appended bias dimension in the 3073-rd position (i.e. bias trick)
  - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)
  - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)
  """
  delta = 1.0 # see notes about delta later in this section
  scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class
  correct_class_score = scores[y]
  D = W.shape[0] # number of classes, e.g. 10
  loss_i = 0.0
  for j in range(D): # iterate over all wrong classes
    if j == y:
      # skip for the true class to only loop over incorrect classes
      continue
    # accumulate loss for the i-th example
    loss_i += max(0, scores[j] - correct_class_score + delta)
  return loss_i

def L_i_vectorized(x, y, W):
  """
  A faster half-vectorized implementation. half-vectorized
  refers to the fact that for a single example the implementation contains
  no for loops, but there is still one loop over the examples (outside this function)
  """
  delta = 1.0
  scores = W.dot(x)
  # compute the margins for all classes in one vector operation
  margins = np.maximum(0, scores - scores[y] + delta)
  # on y-th position scores[y] - scores[y] canceled and gave delta. We want
  # to ignore the y-th position and only consider margin on max wrong class
  margins[y] = 0
  loss_i = np.sum(margins)
  return loss_i

def L(X, y, W):
  """
  fully-vectorized implementation :
  - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)
  - y is array of integers specifying correct class (e.g. 50,000-D array)
  - W are weights (e.g. 10 x 3073)
  """
  # evaluate loss over all examples in X without using any for loops
  # left as exercise to reader in the assignment
相关推荐
Ritsu栗子12 分钟前
代码随想录算法训练day63---图论系列7《prim算法&kruskal算法》
c++·算法·图论
一只码代码的章鱼19 分钟前
数据结构与算法-图论-最短路-单源最短路的建图方式
算法·图论
黄金龙PLUS28 分钟前
十分简单的流密码算法RC4
算法·网络安全·密码学·哈希算法·同态加密
我想吃余33 分钟前
【初探数据结构】时间复杂度和空间复杂度
数据结构·算法
a_j5833 分钟前
算法与数据结构(环形链表II)
数据结构·算法·链表
Shockang44 分钟前
机器学习数学通关指南——牛顿-莱布尼茨公式
数学·机器学习·微积分
愚戏师1 小时前
从零到一学习c++(基础篇--筑基期十一-类)
开发语言·数据结构·c++·学习·算法
小仙有礼了2 小时前
ArcGis for js 4.x实现测量,测距,高程的功能
javascript·算法·arcgis
轩源源2 小时前
unordered_set和unordered_map的使用
开发语言·数据结构·c++·算法·哈希算法·unordered_map·unordered_set
白白糖3 小时前
Day 49 卡玛笔记
python·算法·力扣