射线和平面求交

射线和平面求交

1、平面方程

如果已知平面的高度(即沿法向量方向的距离)为 height,平面方程可以表示为:

n ^ ⋅ p = h e i g h t \bold{\hat{n}} \cdot p = height n^⋅p=height

p p p 是平面上的任意一点

height 的正负取决于法向量的方向。

2、射线参数方程

r ( t ) = p 0 + t ⋅ d i r \bold{r}(t) = p_0 + t \cdot \bold{dir} r(t)=p0+t⋅dir

p 0 p_0 p0: 是射线的起点
d i r dir dir: 是射线的方向向量
t t t: 表示沿着方向向量走的距离

3、计算交点

n ^ ⋅ ( p 0 + t ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot (p_0 + t \cdot \bold{dir}) = height n^⋅(p0+t⋅dir)=height

展开后:
n ^ ⋅ p 0 + t ⋅ ( n ^ ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot p_0 + t \cdot (\bold{\hat{n}} \cdot \bold{dir}) = height n^⋅p0+t⋅(n^⋅dir)=height

解这个方程,求出 t t t:
t = h e i g h t − n ^ ⋅ p 0 n ^ ⋅ d i r t = \frac{height - \bold{\hat{n}} \cdot p_0}{\bold{\hat{n}} \cdot \bold{dir}} t=n^⋅dirheight−n^⋅p0

4、代码实现
js 复制代码
/**
 * 计算射线和平面的交点
 * @param source 射线起点
 * @param dir 射线方向
 * @param normal  平面法向量
 * @param height  平面高度
 */
vec3 interceptPlane(in vec3 source, in vec3 dir, in vec3 normal, float height)
{
    float distance = (-height - dot(normal, source)) / dot(normal, dir);

    if (distance > 0.0)
        return source + dir * distance;
    else
        return vec3(infinity);  // 返回一个表示无穷远的向量
}
相关推荐
写代码的小球2 分钟前
求模运算符c
算法
大千AI助手4 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
YuTaoShao5 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记5 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲6 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
刘海东刘海东6 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
pumpkin845147 小时前
Rust 调用 C 函数的 FFI
c语言·算法·rust
挺菜的7 小时前
【算法刷题记录(简单题)003】统计大写字母个数(java代码实现)
java·数据结构·算法
mit6.8247 小时前
7.6 优先队列| dijkstra | hash | rust
算法