射线和平面求交

射线和平面求交

1、平面方程

如果已知平面的高度(即沿法向量方向的距离)为 height,平面方程可以表示为:

n ^ ⋅ p = h e i g h t \bold{\hat{n}} \cdot p = height n^⋅p=height

p p p 是平面上的任意一点

height 的正负取决于法向量的方向。

2、射线参数方程

r ( t ) = p 0 + t ⋅ d i r \bold{r}(t) = p_0 + t \cdot \bold{dir} r(t)=p0+t⋅dir

p 0 p_0 p0: 是射线的起点
d i r dir dir: 是射线的方向向量
t t t: 表示沿着方向向量走的距离

3、计算交点

n ^ ⋅ ( p 0 + t ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot (p_0 + t \cdot \bold{dir}) = height n^⋅(p0+t⋅dir)=height

展开后:
n ^ ⋅ p 0 + t ⋅ ( n ^ ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot p_0 + t \cdot (\bold{\hat{n}} \cdot \bold{dir}) = height n^⋅p0+t⋅(n^⋅dir)=height

解这个方程,求出 t t t:
t = h e i g h t − n ^ ⋅ p 0 n ^ ⋅ d i r t = \frac{height - \bold{\hat{n}} \cdot p_0}{\bold{\hat{n}} \cdot \bold{dir}} t=n^⋅dirheight−n^⋅p0

4、代码实现
js 复制代码
/**
 * 计算射线和平面的交点
 * @param source 射线起点
 * @param dir 射线方向
 * @param normal  平面法向量
 * @param height  平面高度
 */
vec3 interceptPlane(in vec3 source, in vec3 dir, in vec3 normal, float height)
{
    float distance = (-height - dot(normal, source)) / dot(normal, dir);

    if (distance > 0.0)
        return source + dir * distance;
    else
        return vec3(infinity);  // 返回一个表示无穷远的向量
}
相关推荐
独好紫罗兰3 分钟前
洛谷题单3-P1217 [USACO1.5] 回文质数 Prime Palindromes-python-流程图重构
开发语言·python·算法
独好紫罗兰9 分钟前
洛谷题单2-P1424 小鱼的航程(改进版)-python-流程图重构
开发语言·python·算法
qystca1 小时前
蓝桥云客---九宫幻方
算法·深度优先·图论
明月清了个风2 小时前
数据结构与算法学习笔记----贪心区间问题
笔记·学习·算法·贪心算法
努力毕业的小土博^_^2 小时前
【EI/Scopus双检索】2025年4月光电信息、传感云、边缘计算、光学成像、物联网、智慧城市、新材料国际学术盛宴来袭!
人工智能·神经网络·物联网·算法·智慧城市·边缘计算
神里流~霜灭2 小时前
数据结构:二叉树(三)·(重点)
c语言·数据结构·c++·算法·二叉树·红黑树·完全二叉树
网安秘谈2 小时前
非对称加密技术深度解析:从数学基础到工程实践
算法
luckyme_2 小时前
leetcode-代码随想录-哈希表-有效的字母异位词
算法·leetcode·散列表
zh_xuan2 小时前
LeeCode 57. 插入区间
c语言·开发语言·数据结构·算法
莫有杯子的龙潭峡谷2 小时前
4.4 代码随想录第三十五天打卡
c++·算法