射线和平面求交

射线和平面求交

1、平面方程

如果已知平面的高度(即沿法向量方向的距离)为 height,平面方程可以表示为:

n ^ ⋅ p = h e i g h t \bold{\hat{n}} \cdot p = height n^⋅p=height

p p p 是平面上的任意一点

height 的正负取决于法向量的方向。

2、射线参数方程

r ( t ) = p 0 + t ⋅ d i r \bold{r}(t) = p_0 + t \cdot \bold{dir} r(t)=p0+t⋅dir

p 0 p_0 p0: 是射线的起点
d i r dir dir: 是射线的方向向量
t t t: 表示沿着方向向量走的距离

3、计算交点

n ^ ⋅ ( p 0 + t ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot (p_0 + t \cdot \bold{dir}) = height n^⋅(p0+t⋅dir)=height

展开后:
n ^ ⋅ p 0 + t ⋅ ( n ^ ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot p_0 + t \cdot (\bold{\hat{n}} \cdot \bold{dir}) = height n^⋅p0+t⋅(n^⋅dir)=height

解这个方程,求出 t t t:
t = h e i g h t − n ^ ⋅ p 0 n ^ ⋅ d i r t = \frac{height - \bold{\hat{n}} \cdot p_0}{\bold{\hat{n}} \cdot \bold{dir}} t=n^⋅dirheight−n^⋅p0

4、代码实现
js 复制代码
/**
 * 计算射线和平面的交点
 * @param source 射线起点
 * @param dir 射线方向
 * @param normal  平面法向量
 * @param height  平面高度
 */
vec3 interceptPlane(in vec3 source, in vec3 dir, in vec3 normal, float height)
{
    float distance = (-height - dot(normal, source)) / dot(normal, dir);

    if (distance > 0.0)
        return source + dir * distance;
    else
        return vec3(infinity);  // 返回一个表示无穷远的向量
}
相关推荐
云里雾里!8 小时前
力扣 209. 长度最小的子数组:滑动窗口解法完整解析
数据结构·算法·leetcode
CoderYanger9 小时前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节
憨憨崽&9 小时前
进击大厂:程序员必须修炼的算法“内功”与思维体系
开发语言·数据结构·算法·链表·贪心算法·线性回归·动态规划
chem411110 小时前
C 语言 函数指针和函数指针数组
c语言·数据结构·算法
liu****10 小时前
八.函数递归
c语言·开发语言·数据结构·c++·算法
CM莫问10 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
DuHz10 小时前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
梦想的旅途211 小时前
基于雪花算法(Snowflake)的 Go 语言唯一 ID 生成与并发安全实现
算法·安全·golang
Vanranrr11 小时前
C++临时对象与悬空指针:一个导致资源加载失败的隐藏陷阱
服务器·c++·算法
adam_life12 小时前
【P8306 【模板】字典树】
数据结构·算法·字典树·trie·哈希表··结构体