射线和平面求交

射线和平面求交

1、平面方程

如果已知平面的高度(即沿法向量方向的距离)为 height,平面方程可以表示为:

n ^ ⋅ p = h e i g h t \bold{\hat{n}} \cdot p = height n^⋅p=height

p p p 是平面上的任意一点

height 的正负取决于法向量的方向。

2、射线参数方程

r ( t ) = p 0 + t ⋅ d i r \bold{r}(t) = p_0 + t \cdot \bold{dir} r(t)=p0+t⋅dir

p 0 p_0 p0: 是射线的起点
d i r dir dir: 是射线的方向向量
t t t: 表示沿着方向向量走的距离

3、计算交点

n ^ ⋅ ( p 0 + t ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot (p_0 + t \cdot \bold{dir}) = height n^⋅(p0+t⋅dir)=height

展开后:
n ^ ⋅ p 0 + t ⋅ ( n ^ ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot p_0 + t \cdot (\bold{\hat{n}} \cdot \bold{dir}) = height n^⋅p0+t⋅(n^⋅dir)=height

解这个方程,求出 t t t:
t = h e i g h t − n ^ ⋅ p 0 n ^ ⋅ d i r t = \frac{height - \bold{\hat{n}} \cdot p_0}{\bold{\hat{n}} \cdot \bold{dir}} t=n^⋅dirheight−n^⋅p0

4、代码实现
js 复制代码
/**
 * 计算射线和平面的交点
 * @param source 射线起点
 * @param dir 射线方向
 * @param normal  平面法向量
 * @param height  平面高度
 */
vec3 interceptPlane(in vec3 source, in vec3 dir, in vec3 normal, float height)
{
    float distance = (-height - dot(normal, source)) / dot(normal, dir);

    if (distance > 0.0)
        return source + dir * distance;
    else
        return vec3(infinity);  // 返回一个表示无穷远的向量
}
相关推荐
不是吧这都有重名30 分钟前
[论文阅读]Deeply-Supervised Nets
论文阅读·人工智能·算法·大语言模型
homelook35 分钟前
matlab simulink双边反激式变压器锂离子电池均衡系统,双目标均衡策略,仿真模型,提高均衡速度38%
算法
什码情况1 小时前
星际篮球争霸赛/MVP争夺战 - 华为OD机试真题(A卷、Java题解)
java·数据结构·算法·华为od·面试·机试
天上路人1 小时前
采用AI神经网络降噪算法的通信语音降噪(ENC)模组性能测试和应用
人工智能·神经网络·算法
字节高级特工2 小时前
【C++】”如虎添翼“:模板初阶
java·c语言·前端·javascript·c++·学习·算法
.Vcoistnt2 小时前
Codeforces Round 1024 (Div. 2)(A-D)
数据结构·c++·算法·贪心算法·动态规划·图论
晴天下小雨o2 小时前
排序算法总结
java·算法·排序算法
程序员爱钓鱼2 小时前
循环语句:for、range -《Go语言实战指南》
java·数据结构·算法
LabVIEW开发3 小时前
LabVIEW中算法开发的系统化解决方案与优化
算法·labview
chenyuhao20243 小时前
链表面试题7之相交链表
数据结构·算法·链表·面试·c#