射线和平面求交

射线和平面求交

1、平面方程

如果已知平面的高度(即沿法向量方向的距离)为 height,平面方程可以表示为:

n ^ ⋅ p = h e i g h t \bold{\hat{n}} \cdot p = height n^⋅p=height

p p p 是平面上的任意一点

height 的正负取决于法向量的方向。

2、射线参数方程

r ( t ) = p 0 + t ⋅ d i r \bold{r}(t) = p_0 + t \cdot \bold{dir} r(t)=p0+t⋅dir

p 0 p_0 p0: 是射线的起点
d i r dir dir: 是射线的方向向量
t t t: 表示沿着方向向量走的距离

3、计算交点

n ^ ⋅ ( p 0 + t ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot (p_0 + t \cdot \bold{dir}) = height n^⋅(p0+t⋅dir)=height

展开后:
n ^ ⋅ p 0 + t ⋅ ( n ^ ⋅ d i r ) = h e i g h t \bold{\hat{n}} \cdot p_0 + t \cdot (\bold{\hat{n}} \cdot \bold{dir}) = height n^⋅p0+t⋅(n^⋅dir)=height

解这个方程,求出 t t t:
t = h e i g h t − n ^ ⋅ p 0 n ^ ⋅ d i r t = \frac{height - \bold{\hat{n}} \cdot p_0}{\bold{\hat{n}} \cdot \bold{dir}} t=n^⋅dirheight−n^⋅p0

4、代码实现
js 复制代码
/**
 * 计算射线和平面的交点
 * @param source 射线起点
 * @param dir 射线方向
 * @param normal  平面法向量
 * @param height  平面高度
 */
vec3 interceptPlane(in vec3 source, in vec3 dir, in vec3 normal, float height)
{
    float distance = (-height - dot(normal, source)) / dot(normal, dir);

    if (distance > 0.0)
        return source + dir * distance;
    else
        return vec3(infinity);  // 返回一个表示无穷远的向量
}
相关推荐
沙威玛_LHE1 小时前
树和二叉树
数据结构·算法
py有趣2 小时前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode
夏鹏今天学习了吗3 小时前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
吃着火锅x唱着歌4 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程5 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA5 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog1235 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
Tiandaren6 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_795167207 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
小当家.1057 小时前
[LeetCode]Hot100系列.贪心总结+思想总结
算法·leetcode·职场和发展