卷积神经网络学习问题总结

问题一: 深度学习中的损失函数和应用场景

回归任务:

均方误差函数(MSE)适用于回归任务,如预测房价、预测股票价格等。

python 复制代码
import torch.nn as nn  
loss_fn = nn.MSELoss()  

分类任务:

交叉熵损失函数(Cross-Entropy Loss)适用于分类任务,如图像分类、文本分类等。对于多分类问题,该损失函数可与Softmax激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.CrossEntropyLoss()  

二分类任务:

二元交叉熵损失函数(Binary Cross-Entropy Loss)适用于二分类问题,如预测是否为垃圾邮件、预测股票涨跌等。对于二分类问题,该损失函数可与Sigmoid激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.BCELoss() 

问题二: 空洞卷积

灰色部分为卷积核权重

白色部分为空,值为0

dilation rate:空洞率

权重值的间隔为dilation rate - 1

例:m = 3, p = 0, s = 1时

(m表示卷积核大小,p 表示零填充大小(zero-padding), s 表示步长(stride),d表示空洞率(dilation))

若d=1:

若d=2:

优点:在不增加参数的情况下增大感受野,适用于图片size较大,或需要快速感受全局信息的情况。

通过设置不同的dilation rate捕获多尺度上下文信息,适用于需要捕获图片的多层次的情况,如语义分割等。

问题:存在网格效应,远距离点之间的信息可能不相关。

解决办法:HDC

一、叠加卷积的 dilation rate 不能有大于1的公约数。如 [2, 4, 6] 则不是一个好的三层卷积,依然会出现 gridding effect。解决网格效应

二、将 dilation rate 设计成锯齿状结构,例如 [1, 2, 5, 1, 2, 5] 循环结构。同时捕获远近信息

三、满足:

最常用:

问题三: 残差网络

反向传播路径太长,训练难度增加

问题:

若卷积后的结果与输入X的shape不同, 则不能直接相加

当步长不为1,图片大小发生变化

当通道数与输入通道不同,图片通道数 发生变化

解决:

使用一个1x1的卷积核来改变X的shape,使得其能与卷积后的结果shape相匹配(不知道^ ^

残差模型VS等深卷积:

相关推荐
2301_818730566 分钟前
transformer(上)
人工智能·深度学习·transformer
一晌小贪欢8 分钟前
Python 爬虫进阶:如何利用反射机制破解常见反爬策略
开发语言·爬虫·python·python爬虫·数据爬虫·爬虫python
久邦科技9 分钟前
奈飞工厂中文官网入口,影视在线观看|打不开|电脑版下载
学习
木枷12 分钟前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
躺平大鹅18 分钟前
5个实用Python小脚本,新手也能轻松实现(附完整代码)
python
m0_5637451121 分钟前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
yukai0800823 分钟前
【最后203篇系列】039 JWT使用
python
好好学习天天向上~~26 分钟前
6_Linux学习总结_自动化构建
linux·学习·自动化
恣逍信点33 分钟前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘34 分钟前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频