卷积神经网络学习问题总结

问题一: 深度学习中的损失函数和应用场景

回归任务:

均方误差函数(MSE)适用于回归任务,如预测房价、预测股票价格等。

python 复制代码
import torch.nn as nn  
loss_fn = nn.MSELoss()  

分类任务:

交叉熵损失函数(Cross-Entropy Loss)适用于分类任务,如图像分类、文本分类等。对于多分类问题,该损失函数可与Softmax激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.CrossEntropyLoss()  

二分类任务:

二元交叉熵损失函数(Binary Cross-Entropy Loss)适用于二分类问题,如预测是否为垃圾邮件、预测股票涨跌等。对于二分类问题,该损失函数可与Sigmoid激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.BCELoss() 

问题二: 空洞卷积

灰色部分为卷积核权重

白色部分为空,值为0

dilation rate:空洞率

权重值的间隔为dilation rate - 1

例:m = 3, p = 0, s = 1时

(m表示卷积核大小,p 表示零填充大小(zero-padding), s 表示步长(stride),d表示空洞率(dilation))

若d=1:

若d=2:

优点:在不增加参数的情况下增大感受野,适用于图片size较大,或需要快速感受全局信息的情况。

通过设置不同的dilation rate捕获多尺度上下文信息,适用于需要捕获图片的多层次的情况,如语义分割等。

问题:存在网格效应,远距离点之间的信息可能不相关。

解决办法:HDC

一、叠加卷积的 dilation rate 不能有大于1的公约数。如 [2, 4, 6] 则不是一个好的三层卷积,依然会出现 gridding effect。解决网格效应

二、将 dilation rate 设计成锯齿状结构,例如 [1, 2, 5, 1, 2, 5] 循环结构。同时捕获远近信息

三、满足:

最常用:

问题三: 残差网络

反向传播路径太长,训练难度增加

问题:

若卷积后的结果与输入X的shape不同, 则不能直接相加

当步长不为1,图片大小发生变化

当通道数与输入通道不同,图片通道数 发生变化

解决:

使用一个1x1的卷积核来改变X的shape,使得其能与卷积后的结果shape相匹配(不知道^ ^

残差模型VS等深卷积:

相关推荐
黎燃几秒前
AI助力垃圾分类与回收的可行性研究:从算法到落地的深度解析
人工智能
前端小趴菜052 分钟前
python - 变量
python
再吃一根胡萝卜7 分钟前
使用 squashmigrations 命令优化 Django 迁移文件
python·django
强盛小灵通专卖员9 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
逆向菜鸟11 分钟前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
Hello123网站18 分钟前
多墨智能-AI一键生成工作文档/流程图/思维导图
人工智能·流程图·ai工具
有Li1 小时前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
有梦想的攻城狮1 小时前
Java 11中的Collections类详解
java·windows·python·java11·collections
前端小趴菜051 小时前
python - input()函数
python
大唐荣华1 小时前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能