卷积神经网络学习问题总结

问题一: 深度学习中的损失函数和应用场景

回归任务:

均方误差函数(MSE)适用于回归任务,如预测房价、预测股票价格等。

python 复制代码
import torch.nn as nn  
loss_fn = nn.MSELoss()  

分类任务:

交叉熵损失函数(Cross-Entropy Loss)适用于分类任务,如图像分类、文本分类等。对于多分类问题,该损失函数可与Softmax激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.CrossEntropyLoss()  

二分类任务:

二元交叉熵损失函数(Binary Cross-Entropy Loss)适用于二分类问题,如预测是否为垃圾邮件、预测股票涨跌等。对于二分类问题,该损失函数可与Sigmoid激活函数结合使用。

python 复制代码
import torch.nn as nn  
loss_fn = nn.BCELoss() 

问题二: 空洞卷积

灰色部分为卷积核权重

白色部分为空,值为0

dilation rate:空洞率

权重值的间隔为dilation rate - 1

例:m = 3, p = 0, s = 1时

(m表示卷积核大小,p 表示零填充大小(zero-padding), s 表示步长(stride),d表示空洞率(dilation))

若d=1:

若d=2:

优点:在不增加参数的情况下增大感受野,适用于图片size较大,或需要快速感受全局信息的情况。

通过设置不同的dilation rate捕获多尺度上下文信息,适用于需要捕获图片的多层次的情况,如语义分割等。

问题:存在网格效应,远距离点之间的信息可能不相关。

解决办法:HDC

一、叠加卷积的 dilation rate 不能有大于1的公约数。如 [2, 4, 6] 则不是一个好的三层卷积,依然会出现 gridding effect。解决网格效应

二、将 dilation rate 设计成锯齿状结构,例如 [1, 2, 5, 1, 2, 5] 循环结构。同时捕获远近信息

三、满足:

最常用:

问题三: 残差网络

反向传播路径太长,训练难度增加

问题:

若卷积后的结果与输入X的shape不同, 则不能直接相加

当步长不为1,图片大小发生变化

当通道数与输入通道不同,图片通道数 发生变化

解决:

使用一个1x1的卷积核来改变X的shape,使得其能与卷积后的结果shape相匹配(不知道^ ^

残差模型VS等深卷积:

相关推荐
航Hang*15 小时前
第1章:初识Linux系统——第13节:总复习②
linux·笔记·学习·centos
五月君_16 小时前
Nuxt UI v4.3 发布:原生 AI 富文本编辑器来了,Vue 生态又添一员猛将!
前端·javascript·vue.js·人工智能·ui
wjykp16 小时前
109~111集成学习
人工智能·机器学习·集成学习
XLYcmy16 小时前
TarGuessIRefined密码生成器详细分析
开发语言·数据结构·python·网络安全·数据安全·源代码·口令安全
小程故事多_8016 小时前
Spring AI 赋能 Java,Spring Boot 快速落地 LLM 的企业级解决方案
java·人工智能·spring·架构·aigc
xcLeigh16 小时前
AI的提示词专栏:写作助手 Prompt,从提纲到完整文章
人工智能·ai·prompt·提示词
weixin_4334176716 小时前
Canny边缘检测算法原理与实现
python·opencv·算法
QYR_1116 小时前
热塑性复合树脂市场报告:行业现状、增长动力与未来机遇
大数据·人工智能·物联网
梨落秋霜16 小时前
Python入门篇【元组】
android·数据库·python
nju_spy16 小时前
强化学习 -- 无导数随机优化算法玩俄罗斯方块Tetris(交叉熵方法CE + ADP近似动态规划CBMPI)
人工智能·强化学习·策略迭代·近似动态规划·交叉熵方法·价值函数近似·无导数优化