计算机视觉篇1 计算机视觉概览

计算机视觉是一门研究如何使计算机从图像或视频中获取、处理、分析和理解有用信息的学科。

计算机视觉的主要任务包括:

  1. 图像分类:判断图像所属的类别,例如识别图像是猫、狗还是其他物体。
  2. 目标检测:在图像或视频中定位和识别出特定的物体,并标记出其位置和类别。
  3. 图像分割:将图像分割成不同的区域,每个区域对应不同的对象或类别。
  4. 图像生成:根据给定的条件或输入,生成新的逼真图像。
  5. 视频分析:对视频中的内容进行分析,包括动作识别、行为分析等。

为了实现这些任务,计算机视觉运用了多种技术和方法:

  1. 特征提取:从图像中提取有代表性的特征,如颜色、纹理、形状等。
  2. 深度学习:特别是卷积神经网络(CNN)在计算机视觉中取得了巨大的成功,例如 AlexNet、VGG、ResNet 等经典网络架构。
  3. 数据集:大量的标注数据集对于训练和评估模型至关重要,如 ImageNet、COCO 等。

计算机视觉在许多领域有着广泛的应用:

  1. 自动驾驶:识别道路、交通标志、行人等,辅助车辆做出决策。
  2. 医疗诊断:帮助医生分析医学影像,如 X 光、CT 扫描等。
  3. 安防监控:检测异常行为、人脸识别等。
  4. 工业检测:检测产品的缺陷和质量。
  5. 虚拟现实和增强现实:为虚拟和增强环境提供真实的视觉体验。
  6. 直播监测:如不雅图片和视频监测

随着技术的不断发展,计算机视觉的性能和应用场景还在不断扩展和深化。

相关推荐
只说证事14 分钟前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@14 分钟前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬18 分钟前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者24 分钟前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊12126 分钟前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者29 分钟前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能33 分钟前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
新智元37 分钟前
起猛了!这个国家任命 AI 为「部长」:全球首个,手握实权,招标 100% 透明
人工智能·openai
张较瘦_38 分钟前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
艾醒1 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法