计算机视觉篇1 计算机视觉概览

计算机视觉是一门研究如何使计算机从图像或视频中获取、处理、分析和理解有用信息的学科。

计算机视觉的主要任务包括:

  1. 图像分类:判断图像所属的类别,例如识别图像是猫、狗还是其他物体。
  2. 目标检测:在图像或视频中定位和识别出特定的物体,并标记出其位置和类别。
  3. 图像分割:将图像分割成不同的区域,每个区域对应不同的对象或类别。
  4. 图像生成:根据给定的条件或输入,生成新的逼真图像。
  5. 视频分析:对视频中的内容进行分析,包括动作识别、行为分析等。

为了实现这些任务,计算机视觉运用了多种技术和方法:

  1. 特征提取:从图像中提取有代表性的特征,如颜色、纹理、形状等。
  2. 深度学习:特别是卷积神经网络(CNN)在计算机视觉中取得了巨大的成功,例如 AlexNet、VGG、ResNet 等经典网络架构。
  3. 数据集:大量的标注数据集对于训练和评估模型至关重要,如 ImageNet、COCO 等。

计算机视觉在许多领域有着广泛的应用:

  1. 自动驾驶:识别道路、交通标志、行人等,辅助车辆做出决策。
  2. 医疗诊断:帮助医生分析医学影像,如 X 光、CT 扫描等。
  3. 安防监控:检测异常行为、人脸识别等。
  4. 工业检测:检测产品的缺陷和质量。
  5. 虚拟现实和增强现实:为虚拟和增强环境提供真实的视觉体验。
  6. 直播监测:如不雅图片和视频监测

随着技术的不断发展,计算机视觉的性能和应用场景还在不断扩展和深化。

相关推荐
Sammyyyyy几秒前
Symfony AI 正式发布,PHP 原生 AI 时代开启
开发语言·人工智能·后端·php·symfony·servbay
汽车仪器仪表相关领域4 分钟前
光轴精准测量,安全照明保障——NHD-8101/8000型远近光检测仪项目实战分享
数据库·人工智能·安全·压力测试·可用性测试
WJSKad12356 分钟前
基于yolov5-RepNCSPELAN的商品价格标签识别系统实现
人工智能·yolo·目标跟踪
早日退休!!!9 分钟前
现代公司开发AI编译器的多元技术路线(非LLVM方向全解析)
人工智能
Sahadev_12 分钟前
向量搜索:让电脑理解你的搜索意图
人工智能
大模型真好玩22 分钟前
大模型训练全流程实战指南(一)——为什么要学习大模型训练?
人工智能·pytorch·python·大模型·deep learning
张祥64228890422 分钟前
数理统计基础一
人工智能·机器学习·概率论
540_54022 分钟前
ADVANCE Day45
人工智能·python·深度学习
Kun Li26 分钟前
claude使用总结
人工智能
IvorySQL31 分钟前
PostgreSQL 的 SQL 查询之旅
数据库·人工智能·postgresql·开源