基于Faster R-CNN的安全帽目标检测

基于Faster R-CNN的安全帽目标检测项目通常旨在解决工作场所,特别是建筑工地的安全监管问题。这类项目使用计算机视觉技术,特别是深度学习中的Faster R-CNN算法,来自动检测工人是否正确佩戴了安全帽,从而确保遵守安全规定并减少事故风险。

项目背景与目标: 在建筑、矿山和其他高风险作业环境中,安全帽是保护工人免受头部伤害的基本装备。然而,人工检查安全帽的佩戴情况效率低下且容易出错。因此,开发自动化检测系统可以提高工作效率和安全性。

技术细节:

  • 数据收集: 项目首先需要收集大量包含工人头像和安全帽的图像数据,这些数据可能来自于监控摄像头或专门拍摄的照片。
  • 数据标注: 对于每一张图片,需要手动标注安全帽的位置,这通常涉及划定边界框并标记类别(例如,有安全帽、无安全帽)。
  • 模型训练: 使用标注过的数据集来训练Faster R-CNN模型。Faster R-CNN是一个两阶段的目标检测模型,它包括一个区域提议网络(RPN)用于生成候选区域,以及一个用于分类和定位的后续网络。
  • 模型评估: 在测试集上评估模型的性能,调整超参数以优化准确性和召回率。
  • 部署: 将训练好的模型部署到实际环境中,如连接到现场的摄像头,实时分析视频流,识别未戴安全帽的人员。

应用与优势:

  • 实时监控:系统能够连续地分析视频流,及时发现未佩戴安全帽的情况。
  • 减少人力成本:自动化检测减少了对人工监督的需求,节省了人力资源。
  • 提高安全性:通过及时提醒未遵守安全规定的工人,降低潜在的事故风险。
  • 数据分析:收集的数据可用于进一步分析安全行为模式,帮助改善安全管理策略。

挑战与限制:

  • 光照条件变化:室外环境光照变化大,可能影响检测效果。
  • 遮挡问题:工人的姿势、其他物体或人群的遮挡会增加检测难度。
  • 计算资源:实时视频处理需要强大的计算能力,尤其是在边缘设备上。

总之,基于Faster R-CNN的安全帽目标检测项目是一个综合了数据科学、计算机视觉和深度学习技术的解决方案,旨在提高工作场所的安全性。

1. 🔥 训练模型前的准备

  • A.数据准备

数据的标注仍然采用VOC格式的数据标注形式,如果是其他的标注形式比如COCO请自行实现相关代码。将数据最终转化为如下形式:

    #  单行数据的结构: (path_filename, x1, y1, x2, y2, class_name)
    # Note:
    #   一个path_filename 可能对应多个类别(class_name),每个类别占用一行数据
    #   x1, y1, x2, y2 是原图像的坐标, 而不是ratio后图像上的坐标
    #   (x1, y1) 标注框的左上坐标; (x2, y2) 标注框的右下坐标
    #   x1,y1-------------------
    #   |                       |
    #   |                       |
    #   |                       |
    #   |                       |
    #   ---------------------x2,y2

可以运行如下代码实现数据集的准备工作:

python3 ./data/data_pro.py

将在./data文件夹下生成annotation.txt文件,这样训练数据的准备工作即完成。

# path_filename, x1, y1, x2, y2, class_name
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/000605.jpg,37,12,151,154,hat
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/000605.jpg,243,1,393,176,hat
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/PartB_02176.jpg,92,593,180,684,person
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/PartB_02176.jpg,229,648,357,777,person
  • B.配置文件准备

根据自己的训练集和训练任务修改./keras_frcnn/config.py的配置文件,相关参数的解释和配置如下:

self.verbose = True  # 显示训练过程
self.network = 'vgg' # backbone 目前支持vgg(VGG16),resnet50,xception,inception_resnet_v2

# 数据增强策略
self.use_horizontal_flips = False  # 水平随机裁剪
self.use_vertical_flips = False  # 垂直随机裁剪
self.rot_90 = False    # 随机90度旋转

# Anchor Box的scale
# 根据具体的情况去修改,一般是图像或目标的大小做调整!!!!
# self.anchor_box_scales = [128,256,512]
self.anchor_box_scales = [4,8,16,64,128,256,512,1024]


# Anchor Box的ratio
self.anchor_box_ratios = [[1, 1], [1, 2], [2, 1]]
# self.anchor_box_ratios = [[1, 1]]

# 图像最小变填充后的尺寸
self.im_size = 600

# 图像channel-wise上的mean和std,这个值是根据ImageNet数据集得到的
# 可以根据自己训练集调整
self.img_channel_mean = [103.939, 116.779, 123.68]
self.img_scaling_factor = 1.0

# 一次得到的ROI的个数
self.num_rois = 32

# RPN网络特征图的缩小倍数(VGG16的是16,其他网络请自行修改该参数)
# 换网络时 要换的!!!
self.rpn_stride = 16
# 训练时是否做类别blance
self.balanced_classes = False

# Regression时的scaling the stdev
self.std_scaling = 4.0
self.classifier_regr_std = [8.0, 8.0, 4.0, 4.0]

# 训练集制作过程中的正负样本的划分策略,详细才考faster R-CNN原论文
# overlaps for RPN
self.rpn_min_overlap = 0.3
self.rpn_max_overlap = 0.7

# overlaps for classifier ROIs
self.classifier_min_overlap = 0.1
self.classifier_max_overlap = 0.5

# class类别映射
self.class_mapping = None

# base network的预训练模型的存放位置
# keras预训练模型可以在这里下载: https://github.com/fchollet/deep-learning-models

self.model_path = './pre_train/vgg16_weights_tf_kernels_notop.h5'  # 我们使用VGG16
  1. 🐎 训练模型

预训练模型:Shell下运行

python3 train_frcnn.py --path="./data/annotation.txt" --network="vgg" --input_weight_path="./pre_train/vgg16_weights_tf_kernels_notop.h5"

windows下直接运行我们写好的批处理文件:

run_train.bat

3. 🚀 模型推断

将需要测试的图像和视频拷贝到./new_test文件夹

  • A.单张图像推断

Shell下运行:

python3 test_frcnn.py --path="./new_test"

windows下直接运行我们写好的批处理文件:

run_inference.bat
  • B.视频推断

Shell下运行:

python3 test_frcnn_video.py --path="./new_test/test_video.mp4"

windows下直接运行我们写好的批处理文件:

test_video.bat

4. 🎉 DEMO

相关推荐
向阳逐梦2 小时前
ROS机器视觉入门:从基础到人脸识别与目标检测
人工智能·目标检测·计算机视觉
阿_旭6 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~6 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
Evand J19 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
就是求关注21 小时前
基于深度卷积神经网络(CNN)模型的图像着色研究与应用系统实现
cnn·图像着色·照片着色·基于深度学习的图像着色·基于cnn的图像着色
思通数科多模态大模型1 天前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
sp_fyf_20241 天前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
思通数科AI全行业智能NLP系统1 天前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
风走茶未凉1 天前
转置卷积与全卷积网络FCN在语义分割中的应用
网络·深度学习·cnn
非自律懒癌患者1 天前
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
人工智能·算法·目标检测