使用llama.cpp量化模型

文章目录

概要

大模型量化是指在保持模型性能尽可能不变的情况下,通过减少模型参数的位数来降低模型的计算和存储成本。本次实验环境为魔搭社区提供的免费GPU环境(24G),使用Llama.cpp进行4bit量化可以大幅减少大语言模型的内存占用,并提高推理效率。本次采用的模型为前一篇博客所写的基准模型与LoRA微调后的合并模型。

整体实验流程

  1. 由于基准模型较大就直接在服务器上下载并上传LoRA参数合并。

    连不上huggingface,就用的魔搭社区的模型。
    
python 复制代码
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from modelscope import snapshot_download
#模型下载 
model_dir = snapshot_download('ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3')
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.float16)

!pip install -q peft==0.3.0
from peft import PeftModel
# 载入预训练的 LoRA 模型
model_lora = PeftModel.from_pretrained(
    model,
    'lora',
    torch_dtype=torch.float16
)
# 合并和卸载模型
model_lora = model_lora.merge_and_unload()
# 保存模型
model_lora.save_pretrained('ddd/conbine')
tokenizer.save_pretrained('ddd/conbine')
  1. 下载Llama.cpp,用的github的。并make编译,接下来的代码部分均在Linux终端上操作。
bash 复制代码
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make

make过程比较久,耐心等待一会。

  1. 模型文件类型为safetensors,需要将其转换成gguf格式,如果本身是gguf则跳过这一步。

    标记出来的这个三个为接下来使用到的文件或者文件夹。
    
bash 复制代码
python convert_hf_to_gguf.py  /原模型路径/     --outfile  ./输出路径/gguf格式文件名.gguf
python convert_hf_to_gguf.py  ../ddd/conbine/ --outfile  ./models/ggml-8b-f16.gguf

加载完后得到一个ggml-8b-f16.gguf的文件,大小为16.1G。

  1. 接下来开始量化操作,可以量化到8位,也可以4位,我就采用的4位。
bash 复制代码
./llama-quantize ./新模型路径/新模型名.gguf  ./输出路径/4位gguf格式文件名.gguf Q4_K_M 采用4位  如果8位就Q8_K_M
./llama-quantize ./models/ggml-8b-f16.gguf      ./models/ggml-8b-Q4.gguf         Q4_K_M

这个加载时间也久,加载完后得到一个ggml-8b-Q4.gguf文件,大小只有4685MB。

  1. 量化完成了部署试一下。
bash 复制代码
这里有很多参数设置比如top_k啥的,可以百度一下。如下图所示。
./llama-cli -m ./models/ggml-8b-Q4.gguf -c 512 -b 64 -n 256 -t 12 --repeat_penalty 1.0 --top_k 20 --top_p 0.5 --color -i -r "助手:" -f prompts/chat-with-baichuan.txt

结果展示:这个结果不太好,之前微调的模型还有很多问题,这里只是给大家演示一下。

技术细节

  • 如果是用的官方的Llama.cpp有时候需要注意库是否有更新,命令不正确可以去看看github是不是命令改了。

小结

Llama.cpp 是一个轻量级的C++库,旨在帮助用户在资源受限的环境中高效地运行大型语言模型。

  • 轻量级:Llama.cpp设计简单,代码库小,易于理解和修改,适合在嵌入式设备或移动设备上运行。

  • 高效:通过优化的内存管理和计算,Llama.cpp能够在性能有限的硬件上高效运行大模型。

  • 跨平台:支持多种操作系统,包括Linux、Windows和MacOS。

  • 量化支持:内置了对模型进行量化的支持,如4bit、8bit等,能够显著降低内存使用和计算需求。

  • 易用性:提供了简单的API,用户可以方便地加载模型并进行推理。

相关推荐
CS_木成河1 分钟前
【深度学习】预训练和微调概述
人工智能·深度学习·语言模型·微调·预训练
新加坡内哥谈技术10 分钟前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理
真智AI34 分钟前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
胡侃有料2 小时前
【LLAMA】羊驼从LLAMA1到LLAMA3梳理
llama
deephub14 小时前
LLM高效推理:KV缓存与分页注意力机制深度解析
人工智能·深度学习·语言模型
青衫弦语14 小时前
【论文精读】VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶
人工智能·深度学习·语言模型·自然语言处理·自动驾驶
没枕头我咋睡觉14 小时前
【大语言模型_4】源码编译vllm框架cpu版
人工智能·语言模型·自然语言处理
WHATEVER_LEO15 小时前
【每日论文】Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理
小宇爱15 小时前
38、深度学习-自学之路-自己搭建深度学习框架-3、自动梯度计算改进
人工智能·深度学习·自然语言处理
神秘的土鸡17 小时前
使用Open WebUI下载的模型文件(Model)默认存放在哪里?
人工智能·llama·ollama·openwebui