深度学习与神经网络介绍

目录

一:深度学习的概念

二:机器学习和深度学习的区别

1.特征提取:

三:深度学习的应用场景

1.图像识别

2.自然语言处理技术

3.语音技术

四:神经网络的介绍

1.人工神经网络的概念

2.神经元的概念

3.单层神经网络

4.感知机

5.多层神经网络

6.全连接层:

7.激活函数


一:深度学习的概念

深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行特征学习的算法

二:机器学习和深度学习的区别

1.特征提取:

1.机器学习需要人工的特征提取过程,而深度学习没有这个过程,在深度学习中这个过程是通过深度神经网络自动完成的

2.深度学习相比与机器学习需要更多的训练数据,需要大量的算力

三:深度学习的应用场景

1.图像识别

比如日常生活中我们看到的物体识别,场景识别,人脸识别

2.自然语言处理技术

比如机器翻译,文本识别,聊天对话,比如现在很火的IA情侣

3.语音技术

语音识别,比如语音转文字

四:神经网络的介绍

1.人工神经网络的概念

人工神经网络(Artificial Neural Network,ANN ),简称为神经网络(Neural Network,NN )或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型,用于对函数进行估计和近似。和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如机器视觉和语音识别,这些问题都说很难被传统基于规则的编程所解决的

2.神经元的概念

在生物系统中,每个神经元与其他神经元相连,当它"兴奋"时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位。如果当某个神经元的电位超过"阈值",那么它就会被激活,也就是"兴奋"起来,向其他神经元发送化学物质

其中a1,a2,an为输入值

w1,w2,wn是各个值对应的权重

b为偏置

f为激活函数

t为神经元的输出

用数学公式表示就是:

简单来说这个过程就是:求出输入值和权重的内积后,经过一个激活函数得到输出

3.单层神经网络

是最基本的神经元形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量,由于每一个神经元都会产生一个标量的结果,所以单层神经元的输出是一个向量,向量的维度等于神经元的数目

4.感知机

感知机由两层神经网络组成,输入层接收外界输入信号后传递给输出层。

感知机是把一个n维向量空间用一个超平面分割成两部分,给定一个输入向量,超平面可以判断出这个向量位于超平面的那一边,得到输入是正类还是反类。

5.多层神经网络

多层神经网络是又单层神经网络进行叠加之后得到的,所以就形成了层的概念。常见的多层神经网络又如下结构:

输入层:众多神经元接收大量的输入数据,输入的数据称为输入向量

输出层:消息在神经元链接中传输,分析,权衡,形成输出结果,输入的消息称为输出向量。

隐藏层:是输入层和输出层之间的众多神经元和链接组成的各个层面。隐层可以又一层或多层。隐层的节点(神经元)数目不定,但数目越多神经网络的非线性越明显,从而神经网络的强健性更明显

6.全连接层:

全连接层:当这一层和前一层每一个神经元相互链接,我们称这一层维全连接层

7.激活函数

简单又残暴的来说激活函数就是将直线变为曲线的函数,它的作用就是增加模型的非线性分割能力,常见的有:

sigmoid只会输出正数,以及靠近0的输出变化率最大

tanh和sigmoid不同的是,tanh输出可以是负数

Relu是输入只能大于0,如果输入的只有负数,那么Relu不适合,Relu一般用于图片格式,因为图片的像素作为输入时取值维[0,255]

激活函数除了增加模型的非线性分割能力外,还有:提高模型的鲁棒性,缓解梯度消失问题,加速模型收敛等

点个赞呗!!!!!

相关推荐
算家计算3 小时前
5年后手机和APP将成历史?马斯克最新预言背后:端云协同与AI操作系统的未来架构
人工智能·云计算·资讯
多恩Stone4 小时前
【3DV 进阶-5】3D生成中 Inductive Bias (归纳偏置)的技术路线图
人工智能·python·算法·3d·aigc
HaiLang_IT4 小时前
2026 人工智能与大数据专业毕业论文选题方向及题目示例(nlp/自然语言处理/图像处理)
大数据·人工智能·毕业设计选题
minhuan4 小时前
构建AI智能体:八十二、潜藏秩序的发现:隐因子视角下的SVD推荐知识提取与机理阐释
人工智能·svd推荐·隐因子·推荐模型
Brianna Home4 小时前
大模型如何变身金融风控专家
人工智能·深度学习·机器学习·自然语言处理·stable diffusion·1024程序员节
HPC_C4 小时前
Efficient Memory Management for Large Language Model with PagedAttention
人工智能·语言模型·自然语言处理
维维180-3121-14555 小时前
ChatGPT-4o在自然科学中的应用:统计建模、机器学习与时空数据分析实战
人工智能·生态·环境·气象·农业
后端小肥肠5 小时前
从 Coze 到 n8n:我用 n8n 实现了10w+小林漫画的爆款流水线生产
人工智能·aigc·agent
MDLZH5 小时前
WSL实践二
人工智能·pytorch·深度学习