One-Class SVM

前提知识:支持向量机(SVM)-CSDN博客

主要思想

找一个超平面将样本中的正例圈出来,预测就是用这个超平面做决策,在++圈内的样本就认为是正样本,圈外的是其他样本++,如图1所示:
图1 OSVM主要思想抽象图

One-Class SVM 是一个one class classification问题。

one class classification,它只有一个类,然后识别的结果就是:"是"或者"不是"这个类。这听起来和2分类问题貌似一样,它们的区别在于,在2分类问题中,训练集中有2个类,通常称为正例和负例,而在one class classification中,就训练集中只有一个类。

应用场景:当训练集中正负样本不均衡,使训练出来的模型有偏差。这个时候,可以使用one class classification的方法来解决。

工作原理

数据映射:将正常数据通过核函数映射到高维特征空间中,使得正常数据点能够被一个超平面所包围。这个超平面被称为决策边界。

寻找最优超平面(关键):通过最大化超平面与正常数据之间的间隔(如图2 所示),寻找一个最优的分割超平面,使得异常点尽可能远离该超平面。这意味着决策边界要尽可能远离正常数据点。
图2 OC-SVM

图2解释:坐标原点被假设为唯一的一个异常样本,最优超平面与坐标原点最大距离为, 并允许少部分样本在坐标原点与分界面之间,与分类超平面的距离为

异常检测:对于新的数据点,通过计算其与超平面的距离,来判断该数据点是否为异常。距离较大的数据点更有可能是异常点。

公式

其中ν∈(0,1)为支持向量的离群值分数的上界标识符和下界标识符,ρ∈R为偏移值。利用拉格朗日方法求解上述最小化问题,得到如下分类规则:

由w和ρ标识的超平面在特征空间F中到原点的距离最大,它将异常数据点与集中在原点的正常数据点分离开来。

参考:

关于OCSVM与SVDD的理解-CSDN博客

One-Class SVM详解_one class svm-CSDN博客

相关推荐
亚马逊云开发者29 分钟前
Agentic AI基础设施实践经验系列(六):Agent质量评估
人工智能
郁大锤36 分钟前
OpenAI responses使用教程(三) ——Responses create python SDK 介绍
人工智能·python·ai·openai
余衫马41 分钟前
聚类算法入门:像魔法一样把数据自动归类
人工智能·算法·机器学习·聚类
半臻(火白)41 分钟前
Kimi K2 Thinking:开源时代的「思考代理」革命,重新定义AI复杂任务处理
人工智能
水如烟1 小时前
孤能子视角:“十五五“规划动力学分析
人工智能
AI人工智能+1 小时前
无缝对接与数据驱动:护照MRZ识别技术在智慧景区管理中的深度应用
人工智能·计算机视觉·ocr·护照mrz码识别
一水鉴天1 小时前
整体设计 全面梳理复盘之30 Transformer 九宫格三层架构 Designer 全部功能定稿(初稿)之2
前端·人工智能
luoganttcc1 小时前
DiffusionVLA 与BridgeVLA 相比 在 精度和成功率和效率上 有什么 优势
人工智能·算法
飞哥数智坊1 小时前
TRAE CN + K2 Thinking,我试着生成了一个简版的在线 PS
人工智能·ai编程·trae
caiyueloveclamp1 小时前
AI一键生成PPT的实用软件与网站推荐TOP10
人工智能·powerpoint·ai生成ppt·aippt·免费aippt