目标检测之单类别NMS

long time no see!

在目标检测中,常见的是多类别NMS,也就是只对相同类别的boxes来计算IOU;但现实场景中经常遇到同一个物体被识别成2个类别,也就是模型认为它既是类别1也是类别2.这时候通过多类别nms就过滤不掉这种重叠的框。所以就需要进行单类别NMS:即把所有的boxes都认为是一个类别,然后再计算IOU来过滤。

这个函数的三个输入参数分别是:模型检测得到的框(x,y,w,h)、 每个框的得分、nms阈值

python 复制代码
def oneclass_nms(boxes, class_probs, nms_threshold):


    def get_iou(box1, box2):
        """
        计算两个边界框的IOU
        :param box1: 第一个边界框,格式为 [x1, y1, x2, y2]
        :param box2: 第二个边界框,格式为 [x1, y1, x2, y2]
        :return: IOU的值
        """
        x11, y11, x12, y12 = box1
        x21, y21, x22, y22 = box2

        # 计算边界框的交集
        inter_x1 = max(x11, x21)
        inter_y1 = max(y11, y21)
        inter_x2 = min(x12, x22)
        inter_y2 = min(y12, y22)

        # 计算交集面积
        inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)

        # 计算边界框的总面积
        box1_area = (x12 - x11) * (y12 - y11)
        box2_area = (x22 - x21) * (y22 - y21)

        # 计算并集面积
        union_area = box1_area + box2_area - inter_area

        # 计算IOU
        iou = inter_area / union_area
        return iou

    # 初始化一个空列表来存储保留的边界
    boxes_list = copy.deepcopy(boxes.tolist())
    boxes_list_copy = copy.deepcopy(boxes.tolist())
    box_save = set()

    while boxes_list:
        box_a = boxes_list.pop(0)
        for box_b in boxes_list:
            if get_iou(box_a, box_b) > 0.1:
                box_save.add(boxes_list_copy.index(box_a))

    all_index = set(list(range(len(boxes_list_copy))))
    # 获取all_index中不在keep中的索引
    diff = all_index - box_save
    diff = list(diff)
    diff = sorted(diff, key=lambda x: x)

    return diff

在官方的代码中已经有boxes, class_probs, nms_threshold这三个参数的输出,我们只需把它传入上面的函数就可以了。在官方yolo的基础上修改代码如下(注释掉的是官方原始的代码)

在non_max_suppression这个函数里插入我们的单类别nms函数即可。把官方的nms注释掉换成自定义的nms就OK了

相关推荐
总有刁民想爱朕ha17 分钟前
VisionForgeSDK:基于YOLOv8的新一代人工智能视觉检测解决方案
人工智能·yolo·视觉检测
2501_9361460421 分钟前
YOLOv26鱼类目标检测与识别实现
人工智能·yolo·目标检测
赵药师36 分钟前
YOLO训练水面漂浮垃圾数据集FLOW_IMG数据集
人工智能·深度学习·yolo
qunaa01011 小时前
YOLOv26家具物品检测实战:基于Python和OpenCV实现家具识别系统
python·opencv·yolo
KmjJgWeb2 小时前
金属切削刀具分类与识别:基于YOLOv26的高精度检测系统(含代码实现)
yolo·智能电视
qunaa01012 小时前
食品废料纸质载体目标检测与分类_YOLOv26应用
yolo·目标检测·分类
2501_936146042 小时前
目标检测系列:珠宝饰品识别与分类_YOLOv26实现
yolo·目标检测·分类
wfeqhfxz25887822 小时前
珠宝首饰识别与分类_Bangle_Earring_Necklace_YOLOv26改进_目标检测实战
yolo·目标检测·分类
2501_941507945 小时前
【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案
深度学习·安全·yolo
2501_941329729 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪