目标检测之单类别NMS

long time no see!

在目标检测中,常见的是多类别NMS,也就是只对相同类别的boxes来计算IOU;但现实场景中经常遇到同一个物体被识别成2个类别,也就是模型认为它既是类别1也是类别2.这时候通过多类别nms就过滤不掉这种重叠的框。所以就需要进行单类别NMS:即把所有的boxes都认为是一个类别,然后再计算IOU来过滤。

这个函数的三个输入参数分别是:模型检测得到的框(x,y,w,h)、 每个框的得分、nms阈值

python 复制代码
def oneclass_nms(boxes, class_probs, nms_threshold):


    def get_iou(box1, box2):
        """
        计算两个边界框的IOU
        :param box1: 第一个边界框,格式为 [x1, y1, x2, y2]
        :param box2: 第二个边界框,格式为 [x1, y1, x2, y2]
        :return: IOU的值
        """
        x11, y11, x12, y12 = box1
        x21, y21, x22, y22 = box2

        # 计算边界框的交集
        inter_x1 = max(x11, x21)
        inter_y1 = max(y11, y21)
        inter_x2 = min(x12, x22)
        inter_y2 = min(y12, y22)

        # 计算交集面积
        inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)

        # 计算边界框的总面积
        box1_area = (x12 - x11) * (y12 - y11)
        box2_area = (x22 - x21) * (y22 - y21)

        # 计算并集面积
        union_area = box1_area + box2_area - inter_area

        # 计算IOU
        iou = inter_area / union_area
        return iou

    # 初始化一个空列表来存储保留的边界
    boxes_list = copy.deepcopy(boxes.tolist())
    boxes_list_copy = copy.deepcopy(boxes.tolist())
    box_save = set()

    while boxes_list:
        box_a = boxes_list.pop(0)
        for box_b in boxes_list:
            if get_iou(box_a, box_b) > 0.1:
                box_save.add(boxes_list_copy.index(box_a))

    all_index = set(list(range(len(boxes_list_copy))))
    # 获取all_index中不在keep中的索引
    diff = all_index - box_save
    diff = list(diff)
    diff = sorted(diff, key=lambda x: x)

    return diff

在官方的代码中已经有boxes, class_probs, nms_threshold这三个参数的输出,我们只需把它传入上面的函数就可以了。在官方yolo的基础上修改代码如下(注释掉的是官方原始的代码)

在non_max_suppression这个函数里插入我们的单类别nms函数即可。把官方的nms注释掉换成自定义的nms就OK了

相关推荐
Coovally AI模型快速验证16 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
红色的山茶花8 小时前
YOLOv10-1.1部分代码阅读笔记-predictor.py
笔记·深度学习·yolo
AI街潜水的八角1 天前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光1 天前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角2 天前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&2 天前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天2 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机3 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集
abments3 天前
C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测
开发语言·yolo·c#
Coovally AI模型快速验证4 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn