目标检测之单类别NMS

long time no see!

在目标检测中,常见的是多类别NMS,也就是只对相同类别的boxes来计算IOU;但现实场景中经常遇到同一个物体被识别成2个类别,也就是模型认为它既是类别1也是类别2.这时候通过多类别nms就过滤不掉这种重叠的框。所以就需要进行单类别NMS:即把所有的boxes都认为是一个类别,然后再计算IOU来过滤。

这个函数的三个输入参数分别是:模型检测得到的框(x,y,w,h)、 每个框的得分、nms阈值

python 复制代码
def oneclass_nms(boxes, class_probs, nms_threshold):


    def get_iou(box1, box2):
        """
        计算两个边界框的IOU
        :param box1: 第一个边界框,格式为 [x1, y1, x2, y2]
        :param box2: 第二个边界框,格式为 [x1, y1, x2, y2]
        :return: IOU的值
        """
        x11, y11, x12, y12 = box1
        x21, y21, x22, y22 = box2

        # 计算边界框的交集
        inter_x1 = max(x11, x21)
        inter_y1 = max(y11, y21)
        inter_x2 = min(x12, x22)
        inter_y2 = min(y12, y22)

        # 计算交集面积
        inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)

        # 计算边界框的总面积
        box1_area = (x12 - x11) * (y12 - y11)
        box2_area = (x22 - x21) * (y22 - y21)

        # 计算并集面积
        union_area = box1_area + box2_area - inter_area

        # 计算IOU
        iou = inter_area / union_area
        return iou

    # 初始化一个空列表来存储保留的边界
    boxes_list = copy.deepcopy(boxes.tolist())
    boxes_list_copy = copy.deepcopy(boxes.tolist())
    box_save = set()

    while boxes_list:
        box_a = boxes_list.pop(0)
        for box_b in boxes_list:
            if get_iou(box_a, box_b) > 0.1:
                box_save.add(boxes_list_copy.index(box_a))

    all_index = set(list(range(len(boxes_list_copy))))
    # 获取all_index中不在keep中的索引
    diff = all_index - box_save
    diff = list(diff)
    diff = sorted(diff, key=lambda x: x)

    return diff

在官方的代码中已经有boxes, class_probs, nms_threshold这三个参数的输出,我们只需把它传入上面的函数就可以了。在官方yolo的基础上修改代码如下(注释掉的是官方原始的代码)

在non_max_suppression这个函数里插入我们的单类别nms函数即可。把官方的nms注释掉换成自定义的nms就OK了

相关推荐
叶子2024221 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
一勺汤8 小时前
YOLO12 改进|融入 Mamba 架构:插入视觉状态空间模块 VSS Block 的硬核升级
yolo·计算机视觉·mamba·yolov12·yolo12·yolo12该机·yolo12 mamba
蹦蹦跳跳真可爱5891 天前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
孤独野指针*P1 天前
释放模型潜力:浅谈目标检测微调技术(Fine-tuning)
人工智能·深度学习·yolo·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(YOLO简介)
人工智能·python·yolo·目标检测·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪
Coovally AI模型快速验证2 天前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
Mrs.Gril2 天前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
FL16238631292 天前
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
yolo