Carousel of Combinations

由圆排列的公式,不难有 C ( n , k ) = ( k n ) × k ! k C(n,k)=(_k^n)\times \frac{k!}{k} C(n,k)=(kn)×kk!

于是答案为 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j \sum_{i=1}^{n}\sum_{j=1}^{i}((_j^i)\cdot (j-1)!)mod\space j ∑i=1n∑j=1i((ji)⋅(j−1)!)mod j

显然交换求和次序,有 ∑ i = 1 n ∑ j = i n ( ( i j ) ⋅ ( i − 1 ) ! ) m o d i \sum_{i=1}^{n}\sum_{j=i}^{n}((_i^j)\cdot (i-1)!)mod\space i ∑i=1n∑j=in((ij)⋅(i−1)!)mod i

由威尔逊定理可将 i i i限定在质数和 4 4 4之中,再由卢卡斯定理(这个一定要手写写出来才会发现很容易化简,比赛的时候就觉得可以用程序去算就没有化简,从而导致根本没办法往下面做,所以以后遇到公式了一定要手写写出来)可化简为 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d i \sum_{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i ∑i=1n∑j=in(⌊ij⌋⋅(i−1))mod i

补题的时候一直想的是每个 i i i对整体的贡献,但是题解告诉我们也可以考虑 i i i对特定局部的贡献,最后将所有局部汇总就好了

具体来说,这里反过去考虑 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j \sum_{i=1}^{n}\sum_{j=1}^{i}((j^i)\cdot (j-1)!)mod\space j ∑i=1n∑j=1i((ji)⋅(j−1)!)mod j,设 d p [ i ] = ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j dp[i]=\sum{j=1}^{i}((j^i)\cdot (j-1)!)mod\space j dp[i]=∑j=1i((ji)⋅(j−1)!)mod j,再考虑 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d i \sum{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i ∑i=1n∑j=in(⌊ij⌋⋅(i−1))mod i,统计每个 i i i对 d p dp dp数组的贡献(枚举倍数利用差分),时间复杂度为 O ( n O(n O(n ln n ) n) n)

相关推荐
福大大架构师每日一题26 分钟前
文心一言 VS 讯飞星火 VS chatgpt (396)-- 算法导论25.2 1题
算法·文心一言
EterNity_TiMe_41 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
机器学习之心1 小时前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
yyt_cdeyyds1 小时前
FIFO和LRU算法实现操作系统中主存管理
算法
daiyang123...1 小时前
测试岗位应该学什么
数据结构
alphaTao1 小时前
LeetCode 每日一题 2024/11/18-2024/11/24
算法·leetcode
kitesxian2 小时前
Leetcode448. 找到所有数组中消失的数字(HOT100)+Leetcode139. 单词拆分(HOT100)
数据结构·算法·leetcode
VertexGeek2 小时前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
石小石Orz2 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
jiao_mrswang3 小时前
leetcode-18-四数之和
算法·leetcode·职场和发展