Carousel of Combinations

由圆排列的公式,不难有 C ( n , k ) = ( k n ) × k ! k C(n,k)=(_k^n)\times \frac{k!}{k} C(n,k)=(kn)×kk!

于是答案为 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j \sum_{i=1}^{n}\sum_{j=1}^{i}((_j^i)\cdot (j-1)!)mod\space j ∑i=1n∑j=1i((ji)⋅(j−1)!)mod j

显然交换求和次序,有 ∑ i = 1 n ∑ j = i n ( ( i j ) ⋅ ( i − 1 ) ! ) m o d i \sum_{i=1}^{n}\sum_{j=i}^{n}((_i^j)\cdot (i-1)!)mod\space i ∑i=1n∑j=in((ij)⋅(i−1)!)mod i

由威尔逊定理可将 i i i限定在质数和 4 4 4之中,再由卢卡斯定理(这个一定要手写写出来才会发现很容易化简,比赛的时候就觉得可以用程序去算就没有化简,从而导致根本没办法往下面做,所以以后遇到公式了一定要手写写出来)可化简为 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d i \sum_{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i ∑i=1n∑j=in(⌊ij⌋⋅(i−1))mod i

补题的时候一直想的是每个 i i i对整体的贡献,但是题解告诉我们也可以考虑 i i i对特定局部的贡献,最后将所有局部汇总就好了

具体来说,这里反过去考虑 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j \sum_{i=1}^{n}\sum_{j=1}^{i}((j^i)\cdot (j-1)!)mod\space j ∑i=1n∑j=1i((ji)⋅(j−1)!)mod j,设 d p [ i ] = ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d j dp[i]=\sum{j=1}^{i}((j^i)\cdot (j-1)!)mod\space j dp[i]=∑j=1i((ji)⋅(j−1)!)mod j,再考虑 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d i \sum{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i ∑i=1n∑j=in(⌊ij⌋⋅(i−1))mod i,统计每个 i i i对 d p dp dp数组的贡献(枚举倍数利用差分),时间复杂度为 O ( n O(n O(n ln n ) n) n)

相关推荐
Z_z在努力几秒前
【数据结构】List 详解
数据结构·list
静水流深-刘申32 分钟前
算法继续刷起-2025年09月26日
开发语言·c++·算法
木头左1 小时前
跨周期共振效应在ETF网格参数适配中的应用技巧
开发语言·python·算法
顾你&2 小时前
机器学习之无监督学习算法大总结
学习·算法·机器学习
神龙斗士2402 小时前
Java 数组的定义与使用
java·开发语言·数据结构·算法
Y.O.U..2 小时前
力扣HOT100-跳跃游戏II
算法·leetcode
hn小菜鸡2 小时前
LeetCode 3132.找出与数组相加的整数 II
算法·leetcode·职场和发展
微笑尅乐2 小时前
数组模拟加法——力扣66.加一
算法·leetcode·职场和发展
_不会dp不改名_3 小时前
leetcode_146 LRU缓存
算法·leetcode·缓存
Z_z在努力3 小时前
【数据结构】队列(Queue)全面详解
java·开发语言·数据结构