组队学习——支持向量机

本次学习支持向量机部分数据如下所示

|----|------|-------|--------|-------------|------------|------|
| ID | mass | width | height | color_score | fruit_name | kind |

其中ID:1-59是对应训练集和验证集的数据,60-67是对应测试集的数据,其中水果类别一共有四类包括apple、lemon、orange、mandarin。要求根据1-59的数据集的自变量(mass、width、height、color_score)和因变量(kind),去预测60-67的数据水果种类

一、导入支持向量机和其他的库

python 复制代码
import numpy as np
from scipy import stats
from sklearn.model_selection import train_test_split
import pandas as pd  
from sklearn import svm  
from sklearn.metrics import accuracy_score

二、读取数据

python 复制代码
# 设置文件路径  
file_path = 'E:\\Jupyter Workspace\\数学建模\\多分类水果数据.csv'  
# 使用 pandas 的 read_csv 函数读取 CSV 文件,注意查看csv文件的编码,默认不填为utf-8编码
data = pd.read_csv(file_path,encoding='gbk')  
# 显示数据的前几行来验证读取是否成功  
print(data.head())
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
pd.set_option('display.width', 300) # 设置打印宽度(**重要**)
print(data.isnull().any())

三、划分数据

python 复制代码
# 选择第二列到最后一列,第一列相当于序号列可以忽略
X = data.iloc[0:59, 1:5]   # [:)左闭右开

Y = data.iloc[0:59, 6]

# 划分数据集为训练集和验证集
X_train, X_valid, Y_train, Y_valid = train_test_split(X, Y, test_size=0.2, random_state=42)

四、RBF核函数

python 复制代码
# RBF 核函数
rbf_model = svm.SVC(kernel='rbf', gamma='auto')
rbf_model.fit(X_train, Y_train)
rbf_pred = rbf_model.predict(X_valid)
print("RBF Kernel Accuracy:", accuracy_score(Y_valid, rbf_pred))

五、线性核函数

python 复制代码
# 线性核函数
linear_model = svm.SVC(kernel='linear')
linear_model.fit(X_train, Y_train)
linear_pred = linear_model.predict(X_valid)
print("Linear Kernel Accuracy:", accuracy_score(Y_valid, linear_pred))

六、多项式核函数

python 复制代码
# 多项式核函数
poly_model = svm.SVC(kernel='poly', degree=3)
poly_model.fit(X_train, Y_train)
poly_pred = poly_model.predict(X_valid)
print("Polynomial Kernel Accuracy:", accuracy_score(Y_valid, poly_pred))

七、Sigmoid核函数

python 复制代码
# Sigmoid 核函数
sigmoid_model = svm.SVC(kernel='sigmoid')
sigmoid_model.fit(X_train, Y_train)
sigmoid_pred = sigmoid_model.predict(X_valid)
print("Sigmoid Kernel Accuracy:", accuracy_score(Y_valid, sigmoid_pred))

其他

结合相关资料比较一下哪种核函数更适合该题数据,说明理由,同时给出测试集的对应预测结果

python 复制代码
test_X = data.iloc[59:, 1:5]
# print(test_X)
test_Y = data.iloc[59:, 6]
# print(test_Y)

#举例:若为xxx核函数
#预测数据
xxx_pred_test = xxx_model.predict(test_X)
print(xxx_pred_test)

拓展:尝试用以下指标衡量支持向量机(SVR)的预测效果

● MSE(均方误差): 预测值与实际值之差平方的期望值。取值越小,模型准确度越高。

● RMSE(均方根误差):为 MSE 的平方根,取值越小,模型准确度越高。

● MAE(平均绝对误差): 绝对误差的平均值,能反映预测值误差的实际情况。取值越小,模型准确度越高。

● MAPE(平均绝对百分比误差): 是 MAE 的变形,它是一个百分比值。取值越小,模型准确度越高。

● R²: 将预测值跟只使用均值的情况下相比,结果越靠近 1 模型准确度越高。

相关推荐
cwj&xyp7 分钟前
Python(二)str、list、tuple、dict、set
前端·python·算法
机智的叉烧43 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
量子-Alex2 小时前
【多模态聚类】用于无标记视频自监督学习的多模态聚类网络
学习·音视频·聚类
吉大一菜鸡2 小时前
FPGA学习(基于小梅哥Xilinx FPGA)学习笔记
笔记·学习·fpga开发
xiaoshiguang34 小时前
LeetCode:222.完全二叉树节点的数量
算法·leetcode
爱吃西瓜的小菜鸡4 小时前
【C语言】判断回文
c语言·学习·算法
别NULL4 小时前
机试题——疯长的草
数据结构·c++·算法
TT哇4 小时前
*【每日一题 提高题】[蓝桥杯 2022 国 A] 选素数
java·算法·蓝桥杯
小A1595 小时前
STM32完全学习——SPI接口的FLASH(DMA模式)
stm32·嵌入式硬件·学习
岁岁岁平安5 小时前
spring学习(spring-DI(字符串或对象引用注入、集合注入)(XML配置))
java·学习·spring·依赖注入·集合注入·基本数据类型注入·引用数据类型注入