大模型 GPT 到 GPT-3.5 知识点总结

大模型 GPT 到 GPT-3.5 知识点总结

介绍

OpenAI 的生成预训练变换模型 (Generative Pre-trained Transformer, GPT) 系列已经经历了多个迭代,最新版本是 GPT-3.5。每个版本都引入了改进和新特性,以增强模型的能力。

关键点

GPT-1

  • 发布时间:2018年6月
  • 架构:基于 Transformer
  • 参数数量:1.17亿
  • 训练数据:BooksCorpus(8亿字)
  • 主要特性
    • 引入了在大规模文本语料库上进行预训练,并在特定任务上进行微调的概念。
    • 证明了无监督学习在语言建模中的有效性。

GPT-2

  • 发布时间:2019年2月
  • 架构:基于 Transformer
  • 参数数量:15亿
  • 训练数据:40GB 网络文本
  • 主要特性
    • 显著增加了模型参数数量,提高了模型的生成能力。
    • 展示了在多种任务上无需专门微调也能表现出色的通用性。

GPT-3

  • 发布时间:2020年6月
  • 架构:基于 Transformer
  • 参数数量:1750亿
  • 训练数据:570GB 互联网文本
  • 主要特性
    • 大幅增加了参数数量,提升了模型的理解和生成能力。
    • 引入了少样本学习(Few-shot Learning),能在极少的示例下执行任务。

GPT-3.5

  • 发布时间:2023年
  • 架构:基于 Transformer
  • 参数数量:未公开,但预计在 GPT-3 的基础上有显著增加
  • 训练数据:更新至最新的互联网文本
  • 主要特性
    • 进一步提升了生成文本的质量和一致性。
    • 改进了上下文理解能力,使得模型在对话和复杂任务中的表现更佳。
    • 增强了对多轮对话的追踪和回应能力。

结论

从 GPT-1 到 GPT-3.5,OpenAI 的 GPT 系列模型在参数规模、生成能力、理解能力等方面不断取得突破。每一代模型都在前一代的基础上进行改进,体现了深度学习在自然语言处理领域的强大潜力和应用前景。

相关推荐
z千鑫4 小时前
【人工智能】利用大语言模型(LLM)实现机器学习模型选择与实验的自动化
人工智能·gpt·机器学习·语言模型·自然语言处理·自动化·codemoss
光芒再现dev20 小时前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
知来者逆2 天前
使用 GPT-4V 全面评估泛化情绪识别 (GER)
人工智能·gpt·语言模型·自然语言处理·gpt-4v
github_czy2 天前
使用GPT-SoVITS训练语音模型
人工智能·gpt
Yeats_Liao2 天前
昇思大模型平台打卡体验活动:基于MindSpore实现GPT1影评分类
gpt·分类·数据挖掘
龙的爹23332 天前
论文 | Evaluating the Robustness of Discrete Prompts
人工智能·gpt·自然语言处理·nlp·prompt·agi
大数据面试宝典2 天前
【Ai测评】GPT Search偷偷上线,向Google和微软发起挑战!
人工智能·gpt·ai测评·ai之家
灰哥数据智能3 天前
DB-GPT系列(二):DB-GPT部署(镜像一键部署、源码部署)
python·gpt·语言模型·数据分析
开发者每周简报3 天前
ChatGPT o1与GPT-4o、Claude 3.5 Sonnet和Gemini 1.5 Pro的比较
人工智能·gpt·chatgpt
Topstip3 天前
在 Google Chrome 上查找并安装 SearchGPT 扩展
前端·人工智能·chrome·gpt·ai·chatgpt