大模型 GPT 到 GPT-3.5 知识点总结

大模型 GPT 到 GPT-3.5 知识点总结

介绍

OpenAI 的生成预训练变换模型 (Generative Pre-trained Transformer, GPT) 系列已经经历了多个迭代,最新版本是 GPT-3.5。每个版本都引入了改进和新特性,以增强模型的能力。

关键点

GPT-1

  • 发布时间:2018年6月
  • 架构:基于 Transformer
  • 参数数量:1.17亿
  • 训练数据:BooksCorpus(8亿字)
  • 主要特性
    • 引入了在大规模文本语料库上进行预训练,并在特定任务上进行微调的概念。
    • 证明了无监督学习在语言建模中的有效性。

GPT-2

  • 发布时间:2019年2月
  • 架构:基于 Transformer
  • 参数数量:15亿
  • 训练数据:40GB 网络文本
  • 主要特性
    • 显著增加了模型参数数量,提高了模型的生成能力。
    • 展示了在多种任务上无需专门微调也能表现出色的通用性。

GPT-3

  • 发布时间:2020年6月
  • 架构:基于 Transformer
  • 参数数量:1750亿
  • 训练数据:570GB 互联网文本
  • 主要特性
    • 大幅增加了参数数量,提升了模型的理解和生成能力。
    • 引入了少样本学习(Few-shot Learning),能在极少的示例下执行任务。

GPT-3.5

  • 发布时间:2023年
  • 架构:基于 Transformer
  • 参数数量:未公开,但预计在 GPT-3 的基础上有显著增加
  • 训练数据:更新至最新的互联网文本
  • 主要特性
    • 进一步提升了生成文本的质量和一致性。
    • 改进了上下文理解能力,使得模型在对话和复杂任务中的表现更佳。
    • 增强了对多轮对话的追踪和回应能力。

结论

从 GPT-1 到 GPT-3.5,OpenAI 的 GPT 系列模型在参数规模、生成能力、理解能力等方面不断取得突破。每一代模型都在前一代的基础上进行改进,体现了深度学习在自然语言处理领域的强大潜力和应用前景。

相关推荐
小森( ﹡ˆoˆ﹡ )8 小时前
GPT_Data_Processing_Tutorial
数据库·gpt·mysql
眰恦ゞLYF8 小时前
嵌入式硬件——基于IMX6ULL的GPT(通用定时器)实现
单片机·嵌入式硬件·gpt·imx6ull
东方芷兰11 小时前
LLM 笔记 —— 03 大语言模型安全性评定
人工智能·笔记·python·语言模型·自然语言处理·nlp·gpt-3
智慧地球(AI·Earth)2 天前
智能体版中科院学术GPT上线内测!AI与科研的深度碰撞
人工智能·gpt·科研助手·学术智能体
新知图书3 天前
大模型架构之GPT、LLaMA与PaLM模型
人工智能·gpt·语言模型·大模型应用开发·大模型应用
KKKlucifer3 天前
GPT-4 赋能恶意软件 GPT-MalPro:国内首现动态生成规避检测的勒索程序技术深度解析
大数据·人工智能·gpt
LinkTime_Cloud3 天前
OpenAI 陷“GPT门”风波,付费用户遭遇模型偷换与性能降级
人工智能·gpt
LETTER•3 天前
从GPT-1到GPT-3:生成式预训练语言模型的演进之路
gpt·深度学习·语言模型·自然语言处理
七牛云行业应用4 天前
GPT-5 撼动量子计算:AI 在科研领域的颠覆性应用
人工智能·gpt·量子计算·gpt5
zstar-_6 天前
【不背八股】19.GPT-2:不再微调,聚焦零样本
gpt