《经典图论算法》贝尔曼-福特算法(Bellman-Ford)

摘要:

1,Bellman-Ford 算法的介绍

2,Bellman-Ford 算法为什么可以解决有负权边的图

3,Bellman-Ford 算法为什么不能解决有负权回路的图

4,Bellman-Ford 算法的代码实现和负权回路的判断

5,Bellman-Ford 算法的代码优化

1,Bellman-Ford算法的介绍

贝尔曼-福特算法(Bellman-Ford algorithm)和迪杰斯特拉算法(Dijkstra)一样也是求单源点最短路径的,但Dijkstra算法不能解决有负权边的图,如果想要解决有负权边的图可以使用 Bellman-Ford 算法。

解题思路就是假设有一条边 [begin,end,value] ,如果 dis[begin] + value < dis[end] ,我们可以更新 dis[end] 的值为 dis[begin] + value ,如下图所示,0 到 2 的距离如果经过顶点 1 会更小。

所以我们只需要枚举所有的边即可,代码如下:

go 复制代码
for (int[] edge : edges) {// 遍历边。
    int begin = edge[0];// 边的起点。
    int end = edge[1];// 边的终点。
    int value = edge[2];// 边的权值。
    if (dis[begin] + value < dis[end])// 松弛。
        dis[end] = dis[begin] + value;
}

如果只枚举一遍的话,有可能只会更新和起始点邻接的点(也就是起始点直接指向的点),与起始点没有邻接的点可能没更新,也可能更新了,这个和边的更新顺序有关,如下图所示。

也就是说如果枚举一遍,至少可以更新从起始点通过一条边到达的点,枚举两遍至少可以更新从起始点通过两条边到达的点 ...... 。在一个含有 n 个顶点的图中,一个点最多只能有 n-1 条边和起始点相连。所以我们最多只需要枚举 n-1 次即可计算从起始点到其他所有点的距离。

相关推荐
楽码1 分钟前
端到端应用Hmac加密
服务器·后端·算法
Morriser莫29 分钟前
图论Day2学习心得
算法·图论
KarrySmile33 分钟前
Day53--图论--106. 岛屿的周长(卡码网),110. 字符串接龙(卡码网),105. 有向图的完全联通(卡码网)
深度优先·图论·广度优先·广搜·岛屿的周长·字符串接龙·有向图的完全联通
zyd091535 分钟前
代码随想录Day50:图论(图论理论、深度搜索理论、所有可达路径、广度搜索理论)
java·数据结构·算法·leetcode·图论
Cl_rown去掉l变成C39 分钟前
第R5周:天气预测
人工智能·python·深度学习·算法·tensorflow2
CoovallyAIHub1 小时前
VisDrone数据集,专为无人机视觉任务打造
深度学习·算法·计算机视觉
啊阿狸不会拉杆1 小时前
《算法导论》第 22 章 - 基本的图算法
c++·算法·排序算法·图论·拓扑学
Warren982 小时前
Java后端面试题(含Dubbo、MQ、分布式、并发、算法)
java·开发语言·分布式·学习·算法·mybatis·dubbo
现在,此刻10 小时前
leetcode 11. 盛最多水的容器 -java
java·算法·leetcode
☆璇11 小时前
【C++】哈希的应用:位图和布隆过滤器
算法·哈希算法