《经典图论算法》贝尔曼-福特算法(Bellman-Ford)

摘要:

1,Bellman-Ford 算法的介绍

2,Bellman-Ford 算法为什么可以解决有负权边的图

3,Bellman-Ford 算法为什么不能解决有负权回路的图

4,Bellman-Ford 算法的代码实现和负权回路的判断

5,Bellman-Ford 算法的代码优化

1,Bellman-Ford算法的介绍

贝尔曼-福特算法(Bellman-Ford algorithm)和迪杰斯特拉算法(Dijkstra)一样也是求单源点最短路径的,但Dijkstra算法不能解决有负权边的图,如果想要解决有负权边的图可以使用 Bellman-Ford 算法。

解题思路就是假设有一条边 [begin,end,value] ,如果 dis[begin] + value < dis[end] ,我们可以更新 dis[end] 的值为 dis[begin] + value ,如下图所示,0 到 2 的距离如果经过顶点 1 会更小。

所以我们只需要枚举所有的边即可,代码如下:

go 复制代码
for (int[] edge : edges) {// 遍历边。
    int begin = edge[0];// 边的起点。
    int end = edge[1];// 边的终点。
    int value = edge[2];// 边的权值。
    if (dis[begin] + value < dis[end])// 松弛。
        dis[end] = dis[begin] + value;
}

如果只枚举一遍的话,有可能只会更新和起始点邻接的点(也就是起始点直接指向的点),与起始点没有邻接的点可能没更新,也可能更新了,这个和边的更新顺序有关,如下图所示。

也就是说如果枚举一遍,至少可以更新从起始点通过一条边到达的点,枚举两遍至少可以更新从起始点通过两条边到达的点 ...... 。在一个含有 n 个顶点的图中,一个点最多只能有 n-1 条边和起始点相连。所以我们最多只需要枚举 n-1 次即可计算从起始点到其他所有点的距离。

相关推荐
Pluchon1 天前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
菜鸟233号1 天前
力扣347. 前k个高频元素 java实现
算法
Xの哲學1 天前
Linux设备管理:从内核驱动到用户空间的完整架构解析
linux·服务器·算法·架构·边缘计算
xinyu_Jina1 天前
Info Flow:去中心化数据流、跨协议标准化与信息源权重算法
算法·去中心化·区块链
Jac_kie_層樓1 天前
力扣hot100刷题记录(12.2)
算法·leetcode·职场和发展
稚辉君.MCA_P8_Java1 天前
Gemini永久会员 C++返回最长有效子串长度
开发语言·数据结构·c++·后端·算法
京东零售技术1 天前
下一代 Lakehouse 智能未来新引擎 | Apache Hudi Meetup亚洲站活动回顾
算法
京东零售技术1 天前
NeurIPS 2025 | TANDEM:基于双层优化的数据配比学习方法
后端·算法
zmzb01031 天前
C++课后习题训练记录Day42
开发语言·c++·算法
CoovallyAIHub1 天前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
深度学习·算法·计算机视觉