《经典图论算法》贝尔曼-福特算法(Bellman-Ford)

摘要:

1,Bellman-Ford 算法的介绍

2,Bellman-Ford 算法为什么可以解决有负权边的图

3,Bellman-Ford 算法为什么不能解决有负权回路的图

4,Bellman-Ford 算法的代码实现和负权回路的判断

5,Bellman-Ford 算法的代码优化

1,Bellman-Ford算法的介绍

贝尔曼-福特算法(Bellman-Ford algorithm)和迪杰斯特拉算法(Dijkstra)一样也是求单源点最短路径的,但Dijkstra算法不能解决有负权边的图,如果想要解决有负权边的图可以使用 Bellman-Ford 算法。

解题思路就是假设有一条边 [begin,end,value] ,如果 dis[begin] + value < dis[end] ,我们可以更新 dis[end] 的值为 dis[begin] + value ,如下图所示,0 到 2 的距离如果经过顶点 1 会更小。

所以我们只需要枚举所有的边即可,代码如下:

go 复制代码
for (int[] edge : edges) {// 遍历边。
    int begin = edge[0];// 边的起点。
    int end = edge[1];// 边的终点。
    int value = edge[2];// 边的权值。
    if (dis[begin] + value < dis[end])// 松弛。
        dis[end] = dis[begin] + value;
}

如果只枚举一遍的话,有可能只会更新和起始点邻接的点(也就是起始点直接指向的点),与起始点没有邻接的点可能没更新,也可能更新了,这个和边的更新顺序有关,如下图所示。

也就是说如果枚举一遍,至少可以更新从起始点通过一条边到达的点,枚举两遍至少可以更新从起始点通过两条边到达的点 ...... 。在一个含有 n 个顶点的图中,一个点最多只能有 n-1 条边和起始点相连。所以我们最多只需要枚举 n-1 次即可计算从起始点到其他所有点的距离。

相关推荐
XFF不秃头1 小时前
力扣刷题笔记-旋转图像
c++·笔记·算法·leetcode
王老师青少年编程1 小时前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
有为少年2 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%2 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の2 小时前
爬楼梯(动态规划)
算法·动态规划
谈笑也风生2 小时前
经典算法题型之复数乘法(二)
开发语言·python·算法
智算菩萨2 小时前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
lhn2 小时前
大模型强化学习总结
算法
Gigavision3 小时前
MMPD数据集 最新Mamba算法 源码+数据集 下载方式
算法
Xの哲學3 小时前
Linux UPnP技术深度解析: 从设计哲学到实现细节
linux·服务器·网络·算法·边缘计算