Softmax多分类(机器学习)

之前的逻辑回归只能进行二分类。

我们现在使用Softmax进行多分类。

假如我们有的y有4个可选结果(如优秀、良好、及格、不及格)。

x是我们的输入

上面的z是通过输入,计算出的在这4个维度上的"中间值"。

经过这样处理,可以得到预测值为各数的概率。

推广:

接下来定义损失函数:

然后看一下Softmax在神经网络中的应用:

此时我们最后一层有10个神经元,那么输出向量也是10维的。

那么我们也应该有:

以此类推。

相关推荐
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
Liue612312313 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
小鸡吃米…4 小时前
机器学习的商业化变现
人工智能·机器学习
Lun3866buzha4 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
木非哲7 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃8 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd12 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机13 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Σίσυφος190013 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
rcc862814 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习