Softmax多分类(机器学习)

之前的逻辑回归只能进行二分类。

我们现在使用Softmax进行多分类。

假如我们有的y有4个可选结果(如优秀、良好、及格、不及格)。

x是我们的输入

上面的z是通过输入,计算出的在这4个维度上的"中间值"。

经过这样处理,可以得到预测值为各数的概率。

推广:

接下来定义损失函数:

然后看一下Softmax在神经网络中的应用:

此时我们最后一层有10个神经元,那么输出向量也是10维的。

那么我们也应该有:

以此类推。

相关推荐
无难事者若执2 小时前
新手村:逻辑回归-理解03:逻辑回归中的最大似然函数
算法·机器学习·逻辑回归
达柳斯·绍达华·宁2 小时前
自动驾驶04:点云预处理03
人工智能·机器学习·自动驾驶
IT从业者张某某2 小时前
机器学习-04-分类算法-03KNN算法案例
算法·机器学习·分类
补三补四2 小时前
k近邻算法K-Nearest Neighbors(KNN)
人工智能·机器学习
databook3 小时前
线性判别分析(LDA):降维与分类的完美结合
python·机器学习·scikit-learn
硅谷秋水3 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理
林泽毅4 小时前
SwanLab Slack通知插件:让AI训练状态同步更及时
深度学习·机器学习·强化学习
Shockang5 小时前
机器学习的一百个概念(5)数据增强
人工智能·机器学习