Softmax多分类(机器学习)

之前的逻辑回归只能进行二分类。

我们现在使用Softmax进行多分类。

假如我们有的y有4个可选结果(如优秀、良好、及格、不及格)。

x是我们的输入

上面的z是通过输入,计算出的在这4个维度上的"中间值"。

经过这样处理,可以得到预测值为各数的概率。

推广:

接下来定义损失函数:

然后看一下Softmax在神经网络中的应用:

此时我们最后一层有10个神经元,那么输出向量也是10维的。

那么我们也应该有:

以此类推。

相关推荐
悟乙己4 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
WWZZ20255 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
koo3646 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习
Blossom.1188 小时前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
救救孩子把9 小时前
18-机器学习与大模型开发数学教程-第1章 1-10 本章总结与习题
人工智能·数学·机器学习
救救孩子把9 小时前
17-机器学习与大模型开发数学教程-第1章 1-9 凸函数与凸优化基础
人工智能·数学·机器学习
明月照山海-9 小时前
机器学习周报十八
人工智能·机器学习
敢敢のwings10 小时前
VLA: 从具身智能到自动驾驶的关键桥梁
人工智能·机器学习·自动驾驶
zenRRan10 小时前
用中等难度prompt做高效post training
人工智能·深度学习·机器学习·计算机视觉·prompt
Mr.看海11 小时前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机