大语言模型-文本向量模型评估基准 MTEB

MTEB(Massive Text Embedding Benchmark)

涵盖112种语言的58个数据集,包含如下8种任务

1、双语文本挖掘(Bitext Mining)

任务目标: 在双语语料库中识别语义等价的句子对。

任务描述: 输入是来自两种不同语言的两个句子集,对于来自第一个句子集的句子,找到在第二个子集中最匹配的句子。模型将句子编码成向量后用余弦相似度来寻找最相似的句子对。

评估指标: F1是主要的评估指标、Accuracy、precision、recall

2、文本分类(Classification)

任务目标: 模型能够对文本的类别进行准确标注。

任务描述: 基于提供的模型生成文本向量,并使用这些向量作为特征来训练分类器,对文本进行分类。
评估指标: 准确率(多分类)、精确率(二分类)

3、文本聚类(Clustering)

任务目标: 模型能够将文本分组至N个预先没有定义的类别中。
任务描述: 基于提供的模型生成文本向量,并利用聚类模型对这些向量进行分组。

评估指标: V-Measure

4、句子对分类(Pair Classification)

任务目标: 模型能够判断一对文本之间是否存在特定关系,如语义等价或对立。
任务描述: 给定一对文本,判断其是否具有相同含义。

评估指标: AP

5、重新排序(Reranking)

任务目标: 给定一个查询语句和一组候选文本,目标是根据这组候选文本与查询语句的相关性对候选文本进行排序。
任务描述: 输入是一个查询语句以及一组候选文本的列表。模型编码文本后比较与查询语句的相似性。

评估指标: MAP

6、检索(Retrieval)

任务目标: 从大规模文档库中检索出查询语句匹配度最高的文档。
任务描述: 文本向量化后对所有查询语句和文档库中文档计算余弦相似度。得到k个相似度最高的候选文档。

评估指标: NDCG@k

7、语义文本相似度(Semantic Textual Similarity, STS)

任务目标: 模型能够估给定句子对的语义相似度。
任务描述: 基于提供的模型生成文本向量,并使用诸如余弦相似度之类的度量来计算它们之间的相似性。

评估指标: Spearman秩相关性系数

8、摘要(Summarization)

任务目标: 模型需要给机器生成的摘要打分。
任务描述: 包括一个手写摘要和机器生成摘要数据集。模型编码所有摘要,然后对于每一个机器生成摘要向量,计算其与所有手写摘要向量的距离。

评估指标: Pearson、Spearman相关性

参考:

MTEB: Massive Text Embedding Benchmark
词向量模型评估

相关推荐
永远都不秃头的程序员(互关)几秒前
【决策树深度探索(二)】决策树入门:像人类一样决策,理解算法核心原理!
算法·决策树·机器学习
老蒋每日coding3 分钟前
AI Agent 设计模式系列(十八)—— 安全模式
人工智能·安全·设计模式
StarChainTech4 分钟前
一站式租车平台革新:从信用免押到全流程可视化管理的技术实践
大数据·人工智能·微信小程序·小程序·软件需求
DN20204 分钟前
性价比高的AI销售机器人源头厂家
人工智能·机器人
余俊晖12 分钟前
强化学习GRPO(格式奖励)在多模态文档解析中的运用方法
人工智能·自然语言处理·多模态
HaiLang_IT15 分钟前
基于图像处理与深度学习的油橄榄品种和成熟度检测算法研究
图像处理·深度学习·算法
imbackneverdie18 分钟前
2026年国自然申请书“瘦身提质”!
人工智能·ai·自然语言处理·aigc·国自然·国家自然科学基金
aitoolhub19 分钟前
AI生图技术:从底层原理到商业落地的核心逻辑与实用路径
人工智能
BHXDML20 分钟前
基于卷积神经网络通用手写体识别应用实验
人工智能·神经网络·cnn
Miha_Singh26 分钟前
查询优化综述:《A Survey of Query Optimization in Large Language Models》
数据库·人工智能·语言模型·查询优化·查询改写