大语言模型-文本向量模型评估基准 MTEB

MTEB(Massive Text Embedding Benchmark)

涵盖112种语言的58个数据集,包含如下8种任务

1、双语文本挖掘(Bitext Mining)

任务目标: 在双语语料库中识别语义等价的句子对。

任务描述: 输入是来自两种不同语言的两个句子集,对于来自第一个句子集的句子,找到在第二个子集中最匹配的句子。模型将句子编码成向量后用余弦相似度来寻找最相似的句子对。

评估指标: F1是主要的评估指标、Accuracy、precision、recall

2、文本分类(Classification)

任务目标: 模型能够对文本的类别进行准确标注。

任务描述: 基于提供的模型生成文本向量,并使用这些向量作为特征来训练分类器,对文本进行分类。
评估指标: 准确率(多分类)、精确率(二分类)

3、文本聚类(Clustering)

任务目标: 模型能够将文本分组至N个预先没有定义的类别中。
任务描述: 基于提供的模型生成文本向量,并利用聚类模型对这些向量进行分组。

评估指标: V-Measure

4、句子对分类(Pair Classification)

任务目标: 模型能够判断一对文本之间是否存在特定关系,如语义等价或对立。
任务描述: 给定一对文本,判断其是否具有相同含义。

评估指标: AP

5、重新排序(Reranking)

任务目标: 给定一个查询语句和一组候选文本,目标是根据这组候选文本与查询语句的相关性对候选文本进行排序。
任务描述: 输入是一个查询语句以及一组候选文本的列表。模型编码文本后比较与查询语句的相似性。

评估指标: MAP

6、检索(Retrieval)

任务目标: 从大规模文档库中检索出查询语句匹配度最高的文档。
任务描述: 文本向量化后对所有查询语句和文档库中文档计算余弦相似度。得到k个相似度最高的候选文档。

评估指标: NDCG@k

7、语义文本相似度(Semantic Textual Similarity, STS)

任务目标: 模型能够估给定句子对的语义相似度。
任务描述: 基于提供的模型生成文本向量,并使用诸如余弦相似度之类的度量来计算它们之间的相似性。

评估指标: Spearman秩相关性系数

8、摘要(Summarization)

任务目标: 模型需要给机器生成的摘要打分。
任务描述: 包括一个手写摘要和机器生成摘要数据集。模型编码所有摘要,然后对于每一个机器生成摘要向量,计算其与所有手写摘要向量的距离。

评估指标: Pearson、Spearman相关性

参考:

MTEB: Massive Text Embedding Benchmark
词向量模型评估

相关推荐
Warren2Lynch11 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale12 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant12 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_5091383412 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo12 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms112 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑12 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei12 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing13 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Dev7z13 小时前
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
深度学习·yolo