大语言模型-文本向量模型评估基准 MTEB

MTEB(Massive Text Embedding Benchmark)

涵盖112种语言的58个数据集,包含如下8种任务

1、双语文本挖掘(Bitext Mining)

任务目标: 在双语语料库中识别语义等价的句子对。

任务描述: 输入是来自两种不同语言的两个句子集,对于来自第一个句子集的句子,找到在第二个子集中最匹配的句子。模型将句子编码成向量后用余弦相似度来寻找最相似的句子对。

评估指标: F1是主要的评估指标、Accuracy、precision、recall

2、文本分类(Classification)

任务目标: 模型能够对文本的类别进行准确标注。

任务描述: 基于提供的模型生成文本向量,并使用这些向量作为特征来训练分类器,对文本进行分类。
评估指标: 准确率(多分类)、精确率(二分类)

3、文本聚类(Clustering)

任务目标: 模型能够将文本分组至N个预先没有定义的类别中。
任务描述: 基于提供的模型生成文本向量,并利用聚类模型对这些向量进行分组。

评估指标: V-Measure

4、句子对分类(Pair Classification)

任务目标: 模型能够判断一对文本之间是否存在特定关系,如语义等价或对立。
任务描述: 给定一对文本,判断其是否具有相同含义。

评估指标: AP

5、重新排序(Reranking)

任务目标: 给定一个查询语句和一组候选文本,目标是根据这组候选文本与查询语句的相关性对候选文本进行排序。
任务描述: 输入是一个查询语句以及一组候选文本的列表。模型编码文本后比较与查询语句的相似性。

评估指标: MAP

6、检索(Retrieval)

任务目标: 从大规模文档库中检索出查询语句匹配度最高的文档。
任务描述: 文本向量化后对所有查询语句和文档库中文档计算余弦相似度。得到k个相似度最高的候选文档。

评估指标: NDCG@k

7、语义文本相似度(Semantic Textual Similarity, STS)

任务目标: 模型能够估给定句子对的语义相似度。
任务描述: 基于提供的模型生成文本向量,并使用诸如余弦相似度之类的度量来计算它们之间的相似性。

评估指标: Spearman秩相关性系数

8、摘要(Summarization)

任务目标: 模型需要给机器生成的摘要打分。
任务描述: 包括一个手写摘要和机器生成摘要数据集。模型编码所有摘要,然后对于每一个机器生成摘要向量,计算其与所有手写摘要向量的距离。

评估指标: Pearson、Spearman相关性

参考:

MTEB: Massive Text Embedding Benchmark
词向量模型评估

相关推荐
小哈里4 分钟前
【科研】ACM MM 论文 Latex 投稿模板修改(基于sample-sigconf-authordraft-v2.16)
人工智能·llm·科研·latex·cv·overleaf
优思学苑19 分钟前
过程能力指标CPK高为何现场仍不稳?
大数据·人工智能·管理·pdca·管理方法
AaronZZH20 分钟前
AG-UI:连接 AI 智能体与用户应用的开放协议
人工智能·ui
陈天伟教授35 分钟前
人工智能应用- 人工智能交叉:05. 从 AlphaFold1 到 AlphaFold2
人工智能·神经网络·算法·机器学习·推荐算法
Eloudy39 分钟前
CHI 开发备忘 03 记 -- CHI spec 03 网络层
人工智能·ai·arch·hpc
Together_CZ43 分钟前
ViT-5: Vision Transformers for The Mid-2020s—— 面向2020年代中期的视觉Transformer
人工智能·深度学习·ai·transformer·vit·vit-5·面向2020年代中期的视觉
badfl1 小时前
Gemini 3.1 Pro更新内容一览:介绍、令牌限制、如何使用
人工智能·ai
大模型任我行1 小时前
北大:LLM数学证明形式化验证
人工智能·语言模型·自然语言处理·论文笔记
Eloudy1 小时前
直接法 读书笔记 05 第5章 正交方法
人工智能·算法·机器学习
每日新鲜事1 小时前
青花汾酒与2026年北京台春晚共贺马年新春:以文化之酿,共贺新春吉祥
人工智能