大语言模型-GPT2-Generative Pre-Training2

一、背景信息:

GPT2是2019年由OpenAI 提出的预训练语言模型。

GPT2提出语言模型式无监督的多任务学习 。旨在通过无监督学习也能达到和finetune一样的效果,并且拥有更强的泛化能能力。

即提出利用语言模型做下游任务时,不需要下游任务的任何标注信息(zero-shot设定),也不用训练模型。只需要训练一个模型,在多个任务上都能用。

GPT2出自Language Models are Unsupervised Multitask Learners,语言模型是无监督的多任务学习者

二、整体结构:

GPT2继续沿用在GPT中使用的单向 Transformer Decoder 的结构。

相较于GPT模型结构,GPT2做了下面几项改动:

  • 将Layer Normalization步骤放置在各模块之前进行。
  • 在最后一个Attention后增加了一个Layer Normalization。
  • GPT1使用的词向量长度为768,GPT2分别使用了1024、1280、1600长度的词向量。
  • GPT1使用的12层的Transformer Decoder,GPT2分别使用了24、36、48层。
  • 去掉了fine-tuning层,只有无监督的pre-training阶段,不再针对不同任务分别进行微调建模

三、GPT2的训练

GPT有两个问题

  • 对于下游的每个任务,仍需重新训练模型
  • 需要收集有标签的数据

GPT2训练目标: 为解决GPT的这两个问题,GPT-2以使用无监督的预训练模型做有监督的任务作为训练目标,来训练一个泛化能力更强的模型。

多任务学习(Multitask learning) 是指在训练一个模型时,同时使用多个任务不同领域不同来源的数据集,通过多个损失函数来达到一个模式在多个任务上都能用的效果。

GPT2最核心的地方,是在无监督的情况下进行训练,并且实现zero-shot的多任务推理。

GPT2根据已知的上文(残句),预测未知的下文(下一个词)。

模型在预测出每个新词后,该词就被添加在当前词序列(句子)后面,这个序列(句子)会成为模型下一步的新输入。

这种对序列进行条件概率建模方法叫做自回归(auto-regression)

Reference

1、GPT2-Language Models are Unsupervised Multitask Learners

2、DonngZH【大模型】GPT-2

3、FLUID-GPT,Steve D Yang

4、The Illustrated GPT-2

相关推荐
2501_941982056 分钟前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
事变天下22 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手23 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT24 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380232 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹33 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬36 分钟前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
Dev7z39 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路1 小时前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai
企业智能研究1 小时前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析