大语言模型-GPT2-Generative Pre-Training2

一、背景信息:

GPT2是2019年由OpenAI 提出的预训练语言模型。

GPT2提出语言模型式无监督的多任务学习 。旨在通过无监督学习也能达到和finetune一样的效果,并且拥有更强的泛化能能力。

即提出利用语言模型做下游任务时,不需要下游任务的任何标注信息(zero-shot设定),也不用训练模型。只需要训练一个模型,在多个任务上都能用。

GPT2出自Language Models are Unsupervised Multitask Learners,语言模型是无监督的多任务学习者

二、整体结构:

GPT2继续沿用在GPT中使用的单向 Transformer Decoder 的结构。

相较于GPT模型结构,GPT2做了下面几项改动:

  • 将Layer Normalization步骤放置在各模块之前进行。
  • 在最后一个Attention后增加了一个Layer Normalization。
  • GPT1使用的词向量长度为768,GPT2分别使用了1024、1280、1600长度的词向量。
  • GPT1使用的12层的Transformer Decoder,GPT2分别使用了24、36、48层。
  • 去掉了fine-tuning层,只有无监督的pre-training阶段,不再针对不同任务分别进行微调建模

三、GPT2的训练

GPT有两个问题

  • 对于下游的每个任务,仍需重新训练模型
  • 需要收集有标签的数据

GPT2训练目标: 为解决GPT的这两个问题,GPT-2以使用无监督的预训练模型做有监督的任务作为训练目标,来训练一个泛化能力更强的模型。

多任务学习(Multitask learning) 是指在训练一个模型时,同时使用多个任务不同领域不同来源的数据集,通过多个损失函数来达到一个模式在多个任务上都能用的效果。

GPT2最核心的地方,是在无监督的情况下进行训练,并且实现zero-shot的多任务推理。

GPT2根据已知的上文(残句),预测未知的下文(下一个词)。

模型在预测出每个新词后,该词就被添加在当前词序列(句子)后面,这个序列(句子)会成为模型下一步的新输入。

这种对序列进行条件概率建模方法叫做自回归(auto-regression)

Reference

1、GPT2-Language Models are Unsupervised Multitask Learners

2、DonngZH【大模型】GPT-2

3、FLUID-GPT,Steve D Yang

4、The Illustrated GPT-2

相关推荐
L.fountain8 分钟前
强化学习2.2 MDP实践——Frozen lake
人工智能·强化学习
JJJJ_iii12 分钟前
【机器学习06】神经网络的实现、训练与向量化
人工智能·笔记·深度学习·神经网络·学习·机器学习·线性回归
倔强的石头10615 分钟前
AI协作天花板!CherryStudio让多模型协同像搭积木
人工智能·cpolar
IT_陈寒16 分钟前
Vite 3.0 性能优化实战:5个技巧让你的构建速度提升200% 🚀
前端·人工智能·后端
说私域37 分钟前
从工具理性到价值共生:开源链动2+1模式、AI智能名片与S2B2C商城系统的社会连接重构研究
人工智能·重构·开源
heisd_139 分钟前
OpenCV计算机视觉库
人工智能·opencv·计算机视觉
wb043072016 小时前
性能优化实战:基于方法执行监控与AI调用链分析
java·人工智能·spring boot·语言模型·性能优化
AAA小肥杨6 小时前
基于k8s的Python的分布式深度学习训练平台搭建简单实践
人工智能·分布式·python·ai·kubernetes·gpu
mit6.8248 小时前
[Agent可视化] 配置系统 | 实现AI模型切换 | 热重载机制 | fsnotify库(go)
开发语言·人工智能·golang
Percent_bigdata9 小时前
百分点科技发布中国首个AI原生GEO产品Generforce,助力品牌决胜AI搜索新时代
人工智能·科技·ai-native