【独家首发】Matlab实现天鹰优化算法AO优化Transformer-LSTM实现负荷数据回归预测

% 导入数据集

load('load_data.mat'); % 假设负荷数据保存在load_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 定义目标函数

fitness_function = @(x) evaluate_model_performance(x, model, input_data, target_data);

% 定义天鹰优化算法参数

options = optimoptions('pso', 'SwarmSize', 50, 'MaxIterations', 100);

% 运行天鹰优化算法

optimized_params, fval\] = particleswarm(fitness_function, num_params, lb, ub, options); % 使用优化后的参数更新模型 updated_model = update_model_with_params(model, optimized_params); % 进行负荷数据回归预测 predicted_data = predict_load_data(updated_model, input_data); % 显示结果 plot_results(target_data, predicted_data); % 自定义函数实现部分 function model = create_transformer_lstm_model() % 创建并配置Transformer-LSTM模型 % 这里省略模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等 % 返回模型 model = ...; % 返回创建好的模型 end function fitness = evaluate_model_performance(params, model, input_data, target_data) % 根据参数优化模型,并评估其性能 % 这里省略了模型优化和性能评估的具体步骤 % 返回模型性能指标(适应度值) fitness = ...; % 返回模型性能指标 end function updated_model = update_model_with_params(model, params) % 使用优化后的参数更新模型 % 这里省略了模型参数更新的具体步骤 % 返回更新后的模型 updated_model = ...; % 返回更新后的模型 end function predicted_data = predict_load_data(model, input_data) % 使用模型进行负荷数据预测 % 这里省略了负荷数据预测的具体步骤 % 返回预测结果 predicted_data = ...; % 返回预测结果 end function plot_results(target_data, predicted_data) % 绘制实际负荷数据和预测结果的图形 % 这里省略了绘图的具体步骤 % 显示图形 end

相关推荐
ChillJavaGuy8 小时前
常见限流算法详解与对比
java·算法·限流算法
sali-tec8 小时前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
你怎么知道我是队长10 小时前
C语言---循环结构
c语言·开发语言·算法
艾醒10 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法
兔子不吃草~11 小时前
Transformer学习记录与CNN思考
学习·cnn·transformer
苏苏susuus12 小时前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
纪元A梦12 小时前
贪心算法应用:K-Means++初始化详解
算法·贪心算法·kmeans
_不会dp不改名_12 小时前
leetcode_21 合并两个有序链表
算法·leetcode·链表
mark-puls12 小时前
C语言打印爱心
c语言·开发语言·算法
Python技术极客12 小时前
将 Python 应用打包成 exe 软件,仅需一行代码搞定!
算法