【独家首发】Matlab实现天鹰优化算法AO优化Transformer-LSTM实现负荷数据回归预测

% 导入数据集

load('load_data.mat'); % 假设负荷数据保存在load_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 定义目标函数

fitness_function = @(x) evaluate_model_performance(x, model, input_data, target_data);

% 定义天鹰优化算法参数

options = optimoptions('pso', 'SwarmSize', 50, 'MaxIterations', 100);

% 运行天鹰优化算法

optimized_params, fval\] = particleswarm(fitness_function, num_params, lb, ub, options); % 使用优化后的参数更新模型 updated_model = update_model_with_params(model, optimized_params); % 进行负荷数据回归预测 predicted_data = predict_load_data(updated_model, input_data); % 显示结果 plot_results(target_data, predicted_data); % 自定义函数实现部分 function model = create_transformer_lstm_model() % 创建并配置Transformer-LSTM模型 % 这里省略模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等 % 返回模型 model = ...; % 返回创建好的模型 end function fitness = evaluate_model_performance(params, model, input_data, target_data) % 根据参数优化模型,并评估其性能 % 这里省略了模型优化和性能评估的具体步骤 % 返回模型性能指标(适应度值) fitness = ...; % 返回模型性能指标 end function updated_model = update_model_with_params(model, params) % 使用优化后的参数更新模型 % 这里省略了模型参数更新的具体步骤 % 返回更新后的模型 updated_model = ...; % 返回更新后的模型 end function predicted_data = predict_load_data(model, input_data) % 使用模型进行负荷数据预测 % 这里省略了负荷数据预测的具体步骤 % 返回预测结果 predicted_data = ...; % 返回预测结果 end function plot_results(target_data, predicted_data) % 绘制实际负荷数据和预测结果的图形 % 这里省略了绘图的具体步骤 % 显示图形 end

相关推荐
DoraBigHead18 分钟前
小哆啦解题记——两数失踪事件
前端·算法·面试
不太可爱的大白18 分钟前
Mysql分片:一致性哈希算法
数据库·mysql·算法·哈希算法
Tiandaren4 小时前
Selenium 4 教程:自动化 WebDriver 管理与 Cookie 提取 || 用于解决chromedriver版本不匹配问题
selenium·测试工具·算法·自动化
岁忧5 小时前
(LeetCode 面试经典 150 题 ) 11. 盛最多水的容器 (贪心+双指针)
java·c++·算法·leetcode·面试·go
chao_7895 小时前
二分查找篇——搜索旋转排序数组【LeetCode】两次二分查找
开发语言·数据结构·python·算法·leetcode
秋说7 小时前
【PTA数据结构 | C语言版】一元多项式求导
c语言·数据结构·算法
Maybyy7 小时前
力扣61.旋转链表
算法·leetcode·链表
卡卡卡卡罗特9 小时前
每日mysql
数据结构·算法
chao_78910 小时前
二分查找篇——搜索旋转排序数组【LeetCode】一次二分查找
数据结构·python·算法·leetcode·二分查找
lifallen11 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法