python
import numpy as np
import torch
from trimesh import grouping
from trimesh.geometry import faces_to_edges
def subdivide_with_uv( vertices, faces, face_uv_idx,uvs, face_index=None):
"""
Modified from:
https://github.com/mikedh/trimesh/blob/85b4bd1f410d8d8361009c6f27266719a3d2b97d/trimesh/remesh.py#L15
Subdivide a mesh into smaller triangles.
Note that if `face_index` is passed, only those
faces will be subdivided and their neighbors won't
be modified making the mesh no longer "watertight."
Parameters
------------
vertices : (n, 3) float
Vertices in space
faces : (m, 3) int
Indexes of vertices which make up triangular faces
face_uv_idx : (F, 3) int
Indexes of uvs for each vertex of each face
uvs : (uv_num, 2) float
UV coordinates
face_index : faces to subdivide.
if None: all faces of mesh will be subdivided
if (n,) int array of indices: only specified faces
Returns
----------
new_vertices : (q, 3) float
Vertices in space
new_faces : (p, 3) int
Remeshed faces
new_uvs : (uv_num, 2) float
Remeshed uvs
new_face_uv_idx : (F, 3) int
Indexes of uvs for each vertex of each face
"""
if face_index is None:
face_mask = np.ones(len(faces), dtype=bool)
else:
face_mask = np.zeros(len(faces), dtype=bool)
face_mask[face_index] = True
# the (c, 3) int array of vertex indices
faces_subset = faces[face_mask]
face_uv_subset = face_uv_idx[face_mask]
# find the unique edges of our faces subset
edges = np.sort(faces_to_edges(faces_subset), axis=1)
unique, inverse = grouping.unique_rows(edges)
# then only produce one midpoint per unique edge
mid = vertices[edges[unique]].mean(axis=1)
mid_idx = inverse.reshape((-1, 3)) + len(vertices)
# get new uv
edges_uv = np.sort(faces_to_edges(face_uv_subset), axis=1)
unique_uv, inverse_uv = grouping.unique_rows(edges_uv)
mid_uv = uvs[edges_uv[unique_uv]].mean(axis=1)
mid_idx_uv = inverse_uv.reshape((-1, 3)) + len(uvs)
# the new faces_subset with correct winding
f = np.column_stack(
[
faces_subset[:, 0],
mid_idx[:, 0],
mid_idx[:, 2],
mid_idx[:, 0],
faces_subset[:, 1],
mid_idx[:, 1],
mid_idx[:, 2],
mid_idx[:, 1],
faces_subset[:, 2],
mid_idx[:, 0],
mid_idx[:, 1],
mid_idx[:, 2],
]
).reshape((-1, 3))
f_uv = np.column_stack(
[
face_uv_subset[:, 0],
mid_idx_uv[:, 0],
mid_idx_uv[:, 2],
mid_idx_uv[:, 0],
face_uv_subset[:, 1],
mid_idx_uv[:, 1],
mid_idx_uv[:, 2],
mid_idx_uv[:, 1],
face_uv_subset[:, 2],
mid_idx_uv[:, 0],
mid_idx_uv[:, 1],
mid_idx_uv[:, 2],
]
).reshape((-1, 3))
# add the 3 new faces_subset per old face all on the end
# by putting all the new faces after all the old faces
# it makes it easier to understand the indexes
new_faces = np.vstack((faces[~face_mask], f))
new_face_uv_idx = np.vstack((face_uv_idx[~face_mask], f_uv))
# stack the new midpoint vertices on the end
new_vertices = np.vstack((vertices, mid))
new_uvs = np.vstack((uvs, mid_uv))
return new_vertices,new_faces,new_uvs,new_face_uv_idx
def test_subdivide_with_uv(input_file):
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, fname):
import os
fol, na = os.path.split(fname)
na, _ = os.path.splitext(na)
matname = os.path.join(fol, f'model_normalized.mtl') #matname = '%s/%s.mtl' % (fol, na)
fid = open(matname, 'w')
fid.write('newmtl material_0\n')
fid.write('Kd 1 1 1\n')
fid.write('Ka 0 0 0\n')
fid.write('Ks 0.4 0.4 0.4\n')
fid.write('Ns 10\n')
fid.write('illum 2\n')
fid.write('map_Kd %s.png\n' % na)
fid.close()
print('save',matname)
####
fid = open(fname, 'w')
fid.write('mtllib %s.mtl\n' % na)
for pidx, p in enumerate(pointnp_px3):
pp = p
fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2]))
for pidx, p in enumerate(tcoords_px2):
pp = p
fid.write('vt %f %f\n' % (pp[0], pp[1]))
fid.write('usemtl material_0\n')
for i, f in enumerate(facenp_fx3):
f1 = f + 1
f2 = facetex_fx3[i] + 1
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
fid.close()
import kaolin as kal
import torch
import kiui
device = 'cpu'
mesh = kal.io.obj.import_mesh(input_file, with_materials=True)
vertices = mesh.vertices.to(device)
faces = mesh.faces.to(device)
uvs = mesh.uvs.to(device)
face_uvs_idx = mesh.face_uvs_idx.to(device)
materials = [m['map_Kd'].permute(2, 0, 1).unsqueeze(0).to(device).float() / 255. if 'map_Kd' in m else
m['Kd'].reshape(1, 3, 1, 1).to(device)
for m in mesh.materials]
atlas_img = materials[0]
kiui.lo(atlas_img)
kiui.lo(vertices)
kiui.lo(faces)
kiui.lo(uvs)
kiui.lo(face_uvs_idx)
face_vert_uvs = uvs[face_uvs_idx]
kiui.lo(face_vert_uvs)
new_vertices,new_faces,new_uvs,new_face_uv_idx = subdivide_with_uv(vertices, faces, face_uvs_idx,uvs)
kiui.lo(new_vertices)
kiui.lo(new_faces)
kiui.lo(new_uvs)
kiui.lo(new_face_uv_idx)
savemeshtes2(
new_vertices, # pointnp_px3
new_uvs, # tcoords_px2
new_faces, # facenp_fx3
new_face_uv_idx, # facetex_fx3
'temp.obj') # fname
if __name__ == '__main__':
test_subdivide_with_uv('temp/meshes/model.obj')
代码思路:
- 按照trimesh的subdivide来写
- 将vertices换成uvs,faces换成face_uv_idx,如法炮制一遍,即可完成对uv的细分。
结果: