本地部署,Whisper: 开源语音识别模型

目录

简介

特点

应用

使用方法

总结


GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - openai/whisperhttps://github.com/openai/whisper

简介

Whisper 是一个由 OpenAI 训练的强大的开源语音识别模型,它可以将语音转换为文本。Whisper 支持多种语言和语音,并且能够识别不同口音和背景噪音。它在各种语音识别任务中表现出色,包括语音转文本、语音翻译和语音命令识别。

特点

  • 多语言支持: Whisper 支持多种语言,包括英语、中文、法语、德语、西班牙语等。
  • 高精度: Whisper 在各种语音识别任务中表现出高精度,能够准确地将语音转换为文本。
  • 鲁棒性: Whisper 能够识别不同口音和背景噪音,即使在嘈杂的环境中也能保持较高的识别精度。
  • 开源: Whisper 是一个开源模型,这意味着任何人都可以免费使用和修改它。

应用

Whisper 可以应用于各种场景,例如:

  • 语音转文本: 将语音转换为文本,例如将会议录音转换为文字记录。
  • 语音翻译: 将一种语言的语音转换为另一种语言的文本。
  • 语音命令识别: 识别语音命令,例如控制智能家居设备。
  • 语音搜索: 通过语音搜索信息。

使用方法

模型大小

命令行安装

Whisper 可以通过 Python 库使用,以下是使用 Whisper 的示例代码:

复制代码
import whisper

# 加载 Whisper 模型
model = whisper.load_model("base")

# 识别音频文件
audio = whisper.load_audio("audio.wav")

# 将音频转换为文本
result = model.transcribe(audio)

# 打印识别结果
print(result["text"])

UI docker安装

复制代码
docker run -it -p 7860:7860 --platform=linux/amd64 
	registry.hf.space/aadnk-faster-whisper-webui:latest python app.py

运行界面

可以看到支持,音频文件,录音文件,以及视频地址的方式。

总结

Whisper 是一个强大且易于使用的开源语音识别模型,它可以应用于各种场景。其多语言支持、高精度和鲁棒性使其成为语音识别任务的理想选择。

相关推荐
rengang664 分钟前
01-深度学习概述:介绍深度学习的基本概念和发展背景
人工智能·深度学习
Baihai_IDP6 分钟前
探讨超长上下文推理的潜力
人工智能·面试·llm
文火冰糖的硅基工坊8 分钟前
[人工智能-大模型-116]:模型层 - 用通俗易懂的语言,阐述离散卷积的神奇功能和背后的物理意义
人工智能·深度学习·cnn
rengang6610 分钟前
13-卷积神经网络(CNN):探讨CNN在图像处理中的应用和优势
图像处理·人工智能·深度学习·神经网络·cnn
DO_Community14 分钟前
裸金属 vs. 虚拟化 GPU 服务器:AI 训练与推理应该怎么选
运维·服务器·人工智能·llm·大语言模型
科技峰行者17 分钟前
华为发布Atlas 900 DeepGreen AI服务器:单机柜100PF算力重构AI训练基础设施
服务器·人工智能·华为·aigc·gpu算力
weixin_3077791328 分钟前
应对不规则负载的异步ML模型服务AWS架构设计
人工智能·深度学习·机器学习·云计算·aws
Xander W39 分钟前
基于K8s集群的PyTorch DDP 框架分布式训练测试(开发机版)
人工智能·pytorch·分布式·python·深度学习·kubernetes
Wah-Aug43 分钟前
基于 PyTorch 的 UNet 与 NestedUNet 图像分割
人工智能·pytorch·计算机视觉
云和数据.ChenGuang44 分钟前
感知机之争,杀死神经网络的“人工智能之父”
人工智能·深度学习·神经网络