本地部署,Whisper: 开源语音识别模型

目录

简介

特点

应用

使用方法

总结


GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - openai/whisperhttps://github.com/openai/whisper

简介

Whisper 是一个由 OpenAI 训练的强大的开源语音识别模型,它可以将语音转换为文本。Whisper 支持多种语言和语音,并且能够识别不同口音和背景噪音。它在各种语音识别任务中表现出色,包括语音转文本、语音翻译和语音命令识别。

特点

  • 多语言支持: Whisper 支持多种语言,包括英语、中文、法语、德语、西班牙语等。
  • 高精度: Whisper 在各种语音识别任务中表现出高精度,能够准确地将语音转换为文本。
  • 鲁棒性: Whisper 能够识别不同口音和背景噪音,即使在嘈杂的环境中也能保持较高的识别精度。
  • 开源: Whisper 是一个开源模型,这意味着任何人都可以免费使用和修改它。

应用

Whisper 可以应用于各种场景,例如:

  • 语音转文本: 将语音转换为文本,例如将会议录音转换为文字记录。
  • 语音翻译: 将一种语言的语音转换为另一种语言的文本。
  • 语音命令识别: 识别语音命令,例如控制智能家居设备。
  • 语音搜索: 通过语音搜索信息。

使用方法

模型大小

命令行安装

Whisper 可以通过 Python 库使用,以下是使用 Whisper 的示例代码:

复制代码
import whisper

# 加载 Whisper 模型
model = whisper.load_model("base")

# 识别音频文件
audio = whisper.load_audio("audio.wav")

# 将音频转换为文本
result = model.transcribe(audio)

# 打印识别结果
print(result["text"])

UI docker安装

复制代码
docker run -it -p 7860:7860 --platform=linux/amd64 
	registry.hf.space/aadnk-faster-whisper-webui:latest python app.py

运行界面

可以看到支持,音频文件,录音文件,以及视频地址的方式。

总结

Whisper 是一个强大且易于使用的开源语音识别模型,它可以应用于各种场景。其多语言支持、高精度和鲁棒性使其成为语音识别任务的理想选择。

相关推荐
飞哥数智坊21 分钟前
先理需求再写代码:新版 Cursor 用 Plan Mode 落地费曼学习法
人工智能·ai编程·cursor
abcd_zjq22 分钟前
【2025最新】【win10】vs2026+qt6.9+opencv(cmake编译opencv_contrib拓展模
人工智能·qt·opencv·计算机视觉·visual studio
Voyager_424 分钟前
图像处理踩坑:浮点数误差导致的缩放尺寸异常与解决办法
数据结构·图像处理·人工智能·python·算法
知行力27 分钟前
【GitHub每日速递 251011】无需注册!本地开源AI应用构建器Dyad,跨平台速下载!
人工智能·开源·github
jie*27 分钟前
小杰深度学习(ten)——视觉-经典神经网络——LetNet
人工智能·python·深度学习·神经网络·计算机网络·数据分析
xwz小王子30 分钟前
Nature Machine Intelligence丨多模态大型语言模型中的视觉认知
人工智能·语言模型·自然语言处理
冰糖猕猴桃38 分钟前
【AI】深入 LangChain 生态:核心包架构解析
人工智能·ai·架构·langchain
松果财经1 小时前
千亿级赛道,Robobus 赛道中标新加坡自动驾驶巴士项目的“确定性机会”
人工智能·机器学习·自动驾驶
TMT星球1 小时前
滴滴自动驾驶张博:坚持负责任的科技创新,积极探索新型就业空间
人工智能·科技·自动驾驶
Blossom.1181 小时前
用一颗MCU跑通7B大模型:RISC-V+SRAM极致量化实战
人工智能·python·单片机·嵌入式硬件·opencv·机器学习·risc-v