本地部署,Whisper: 开源语音识别模型

目录

简介

特点

应用

使用方法

总结


GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - openai/whisperhttps://github.com/openai/whisper

简介

Whisper 是一个由 OpenAI 训练的强大的开源语音识别模型,它可以将语音转换为文本。Whisper 支持多种语言和语音,并且能够识别不同口音和背景噪音。它在各种语音识别任务中表现出色,包括语音转文本、语音翻译和语音命令识别。

特点

  • 多语言支持: Whisper 支持多种语言,包括英语、中文、法语、德语、西班牙语等。
  • 高精度: Whisper 在各种语音识别任务中表现出高精度,能够准确地将语音转换为文本。
  • 鲁棒性: Whisper 能够识别不同口音和背景噪音,即使在嘈杂的环境中也能保持较高的识别精度。
  • 开源: Whisper 是一个开源模型,这意味着任何人都可以免费使用和修改它。

应用

Whisper 可以应用于各种场景,例如:

  • 语音转文本: 将语音转换为文本,例如将会议录音转换为文字记录。
  • 语音翻译: 将一种语言的语音转换为另一种语言的文本。
  • 语音命令识别: 识别语音命令,例如控制智能家居设备。
  • 语音搜索: 通过语音搜索信息。

使用方法

模型大小

命令行安装

Whisper 可以通过 Python 库使用,以下是使用 Whisper 的示例代码:

import whisper

# 加载 Whisper 模型
model = whisper.load_model("base")

# 识别音频文件
audio = whisper.load_audio("audio.wav")

# 将音频转换为文本
result = model.transcribe(audio)

# 打印识别结果
print(result["text"])

UI docker安装

docker run -it -p 7860:7860 --platform=linux/amd64 
	registry.hf.space/aadnk-faster-whisper-webui:latest python app.py

运行界面

可以看到支持,音频文件,录音文件,以及视频地址的方式。

总结

Whisper 是一个强大且易于使用的开源语音识别模型,它可以应用于各种场景。其多语言支持、高精度和鲁棒性使其成为语音识别任务的理想选择。

相关推荐
学习前端的小z6 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法34 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR35 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️41 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python1 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠1 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~2 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习