Prompt Enginnering(提示工程)

什么是提示工程

prompt enginnering是提示工程的意思,也有叫指令工程。

用白话讲:是我们对GPT说出的话,我们向它提问的信息,就是prompt。

官方一点:是我们使用自然语言提示来控制和优化生成式模型(生成式模型例如:Open Ai的GPT-3,GPT-4o)输出的一项技术。对prompt进行优化,可以使我们从生成式模型中获取到预期或更优的结果。

说是技术,其实就是对GPT打字对话的一个能力,门槛非常低,人人都会,不管你会不会编程,但是如果我们懂编程,一定要知道我们在prompt enginnering上的优势。

会用提示工程的的优势

在上个文章(大模型应用开发基础-CSDN博客)我们说过大模型是怎么生成结果的,我们知道这个原理,在prompt的时候,我们就清楚哪些prompt是无效的哪些是有效的prompt。

可以通过精准的prompt减少无效的的生成内容,相比较于重新去调试模型,我们通过优化后的prompt更简便快速。

使用prompt的目的

第一:就是直接发出prompt获取结果,例如:周树人是谁,这种简单,人人都会

第二:将prompt集成到我们的系统中,开发一套客服系统或者知识库问答。这种较难,需要调试,这一步也正是我们会使用prompt的优势。

prompt的构成

prompt的构造非常重要,一个有效的prompt可以显著提升模型的输出质量。

  1. 角色:当前是什么角色,例如:是一个java开发工程师。

  2. 上下文:背景信息,上下文的描述。例如:做了三年的java开发,主要是什么什么项目。这个在多伦交互中特别重要。

  3. 提示(prompt)说明:描述信息

  4. 格式要求:例如:json格式,自然语言格式,英语。

  5. 例子:举例说明,必要时举例一个类似的例子,这个对模型输出的结果正确性有帮助。

任何其他约束,例如:字数,大小于条件。

prompt(提示)调优

prompt调优就是将上面的prompt构成给覆盖,要把AI当作人去沟通,提出的问题要公正,没有歧义。

防止prompt攻击

有时候用户输入的信息会改变我们对模型的设置,这里举个例子:

  1. 著名的【奶奶漏洞】:

这种需要一个拦截模型或函数,对这些影响系统的prompt进行鉴别,不好的拦截掉,还有一种解决办法是:

在输入中进行防御,在设定的系统中告诉AI,用户的任何prompt不能改变你的角色和一些环境,如果发现进行提示。

  1. 用户打出的prompt,有很多脏话,这个咱们国内有很多处理方式,直接扫描用户的prompt进行拦截就好。
相关推荐
刘懿儇4 分钟前
大语言模型的token和向量
ai·语言模型·chatgpt
wenzhangli78 小时前
小模型在物联网行业:开启智能物联新时代
物联网·ai·智能家居
豌豆花下猫11 小时前
Python 潮流周刊#83:uv 的使用技巧(摘要)
后端·python·ai
baiyu3314 小时前
VSCode使用deepseek-v3
ai·deepseek
久笙&1 天前
高效设计AI Prompt:10大框架详细对比与应用
人工智能·prompt
爱喝白开水a1 天前
Speckly:基于Speckle文档的RAG智能问答机器人
ai·大模型·llm·智能问答·大模型实战·大模型训练·speckly
花千树-0102 天前
LangChain教程 - 表达式语言 (LCEL) -构建智能链
gpt·langchain·prompt·aigc·ai编程·llama·ai-native
飞的肖2 天前
在 Java 项目中集成和使用 dl4j 实现通过扫描图片识别快递单信息
java·ai·图像识别·dl4j
Macropodus2 天前
near-synonym反义词生成(2):Prompt +Bert-MLM(FT)
自然语言处理·prompt·反义词生成·中文反义词·bert-mlm