Prompt Enginnering(提示工程)

什么是提示工程

prompt enginnering是提示工程的意思,也有叫指令工程。

用白话讲:是我们对GPT说出的话,我们向它提问的信息,就是prompt。

官方一点:是我们使用自然语言提示来控制和优化生成式模型(生成式模型例如:Open Ai的GPT-3,GPT-4o)输出的一项技术。对prompt进行优化,可以使我们从生成式模型中获取到预期或更优的结果。

说是技术,其实就是对GPT打字对话的一个能力,门槛非常低,人人都会,不管你会不会编程,但是如果我们懂编程,一定要知道我们在prompt enginnering上的优势。

会用提示工程的的优势

在上个文章(大模型应用开发基础-CSDN博客)我们说过大模型是怎么生成结果的,我们知道这个原理,在prompt的时候,我们就清楚哪些prompt是无效的哪些是有效的prompt。

可以通过精准的prompt减少无效的的生成内容,相比较于重新去调试模型,我们通过优化后的prompt更简便快速。

使用prompt的目的

第一:就是直接发出prompt获取结果,例如:周树人是谁,这种简单,人人都会

第二:将prompt集成到我们的系统中,开发一套客服系统或者知识库问答。这种较难,需要调试,这一步也正是我们会使用prompt的优势。

prompt的构成

prompt的构造非常重要,一个有效的prompt可以显著提升模型的输出质量。

  1. 角色:当前是什么角色,例如:是一个java开发工程师。

  2. 上下文:背景信息,上下文的描述。例如:做了三年的java开发,主要是什么什么项目。这个在多伦交互中特别重要。

  3. 提示(prompt)说明:描述信息

  4. 格式要求:例如:json格式,自然语言格式,英语。

  5. 例子:举例说明,必要时举例一个类似的例子,这个对模型输出的结果正确性有帮助。

任何其他约束,例如:字数,大小于条件。

prompt(提示)调优

prompt调优就是将上面的prompt构成给覆盖,要把AI当作人去沟通,提出的问题要公正,没有歧义。

防止prompt攻击

有时候用户输入的信息会改变我们对模型的设置,这里举个例子:

  1. 著名的【奶奶漏洞】:

这种需要一个拦截模型或函数,对这些影响系统的prompt进行鉴别,不好的拦截掉,还有一种解决办法是:

在输入中进行防御,在设定的系统中告诉AI,用户的任何prompt不能改变你的角色和一些环境,如果发现进行提示。

  1. 用户打出的prompt,有很多脏话,这个咱们国内有很多处理方式,直接扫描用户的prompt进行拦截就好。
相关推荐
带刺的坐椅29 分钟前
Java MCP 实战:构建跨进程与远程的工具服务
java·ai·solon·mcp
小付爱coding38 分钟前
SpringAIAlibaba正式版发布!
ai
令狐少侠20114 小时前
ai之对接电信ds后端服务,通过nginx代理转发https为http,对外请求,保持到达第三方后请求头不变
nginx·ai·https
产品经理独孤虾11 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
雷羿 LexChien12 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
0x21116 小时前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
论文阅读·prompt
海豚调度17 小时前
Linux 基金会报告解读:开源 AI 重塑经济格局,有人失业,有人涨薪!
大数据·人工智能·ai·开源
令狐少侠201118 小时前
ai之RAG本地知识库--基于OCR和文本解析器的新一代RAG引擎:RAGFlow 认识和源码剖析
人工智能·ai
伪_装19 小时前
上下文工程指南
人工智能·prompt·agent·n8n
小屁妞1 天前
Spring AI Alibaba智能测试用例生成
ai·测试用例生成·ai生成测试用例