深入理解Prompt工程

前言:因为大模型的流行,衍生出了一个小领域"Prompt工程",不知道大家会不会跟小编一样,不就是写提示吗,这有什么难的,不过大家还是不要小瞧了Prompt工程,现在很多大模型把会"Prompt工程"作为招聘条件,甚至作为一个岗位,小编在这里浅浅的总结一下

1. 什么是Prompt工程?

Prompt工程(Prompt Engingering),也被称为上下文提示(In-Context Prompting),指的是通过结构化文本等方式来完善提示词,引导LLM输出我们期望的结果。

简单一点来说,就是给LLM模型一些提示或者说指令,让LLM模型清晰准确的知道我们要干什么

  • 那给什么样的提示或者指令能更好更准确输出我们想要的结果呢???怎么设计这样的指令呢???
    这就是Prompt工程要考虑的事情!!!

2. Prompt工程由哪些部分组成?

Prompt工程针对不同的任务设计了不同的提示模版,一般包含下述几部分:

  • 角色: 给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
  • 指示: 对任务进行描述
  • 上下文: 给出与任务相关的其它背景信息(尤其在多轮交互中)
  • 例子: 必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
  • 输入: 任务的输入信息;在提示词中明确的标识出输入
  • 输出: 输出的格式描述,以便后继模块自动解析模型的输出结果

3. 如何写好Prompt工程(调优)

(1)学会定义角色

大模型对 prompt 开头和结尾的内容更敏感。

先定义角色,其实就是在开头把问题域收窄,减少二义性。

(2)学会举例

举例子可以让模型快速get到我们的意图,方便好用,并且效果不错

4. 案例说明

举一个小编深有体会的栗子~

相信读研的小伙伴都会遇到的场景,假如小编现在在写论文,需要将下述这段中文翻译成一段英文:

Yaowei Li等人设计了一个跨模态表示对齐器,使用一组正交基和双门机制来学习全局跨模态对齐,并通过三重对比损失进行全局对齐。

以chatgpt4为例:

prompt:请将下述内容翻译成英文:
【prompt+上述内容】输入到chatgpt4中,得到如下输出:


Yaowei Li and colleagues designed a cross-modal representation aligner that employs a set of orthogonal bases and a dual-gating mechanism to learn global cross-modal alignment. This alignment is achieved through a triplet contrastive loss.


prompt:假如你是一名专业的学术论文撰稿者,你现在正在写论文,对下述内容进行翻译,使其符合学术论文表达: 【prompt+上述内容】 输入到chatgpt4中,得到如下输出:


Yaowei Li et al. have developed a cross-modal representation aligner that leverages a set of orthogonal bases and a dual-gate mechanism to facilitate global cross-modal alignment. The alignment process is optimized using a triplet contrastive loss function to ensure comprehensive alignment across modalities.


5. 参考

相关推荐
过期动态24 分钟前
【动手学深度学习】卷积神经网络(CNN)入门
人工智能·python·深度学习·pycharm·cnn·numpy
deephub8 小时前
计算加速技术比较分析:GPU、FPGA、ASIC、TPU与NPU的技术特性、应用场景及产业生态
人工智能·深度学习·gpu·计算加速
意.远8 小时前
PyTorch参数管理详解:从访问到初始化与共享
人工智能·pytorch·python·深度学习
知来者逆9 小时前
计算机视觉——为什么 mAP 是目标检测的黄金标准
图像处理·人工智能·深度学习·目标检测·计算机视觉
MobiCetus9 小时前
Deep Reinforcement Learning for Robotics翻译解读2
人工智能·深度学习·神经网络·机器学习·生成对抗网络·计算机视觉·数据挖掘
搬砖的阿wei9 小时前
跳跃连接(Skip Connection)与残差连接(Residual Connection)
深度学习·residual·skip connection
Listennnn10 小时前
自动化网络架构搜索(Neural Architecture Search,NAS)
人工智能·深度学习·自动化
欲掩10 小时前
神经网络与深度学习:案例与实践——第三章(3)
人工智能·深度学习·神经网络
Blossom.11811 小时前
大数据时代的隐私保护:区块链技术的创新应用
人工智能·深度学习·自动化·区块链·智能合约
机器鱼11 小时前
基于YOLO11实例分割与奥比中光相机的快递包裹抓取点检测
深度学习