深入理解Prompt工程

前言:因为大模型的流行,衍生出了一个小领域"Prompt工程",不知道大家会不会跟小编一样,不就是写提示吗,这有什么难的,不过大家还是不要小瞧了Prompt工程,现在很多大模型把会"Prompt工程"作为招聘条件,甚至作为一个岗位,小编在这里浅浅的总结一下

1. 什么是Prompt工程?

Prompt工程(Prompt Engingering),也被称为上下文提示(In-Context Prompting),指的是通过结构化文本等方式来完善提示词,引导LLM输出我们期望的结果。

简单一点来说,就是给LLM模型一些提示或者说指令,让LLM模型清晰准确的知道我们要干什么

  • 那给什么样的提示或者指令能更好更准确输出我们想要的结果呢???怎么设计这样的指令呢???
    这就是Prompt工程要考虑的事情!!!

2. Prompt工程由哪些部分组成?

Prompt工程针对不同的任务设计了不同的提示模版,一般包含下述几部分:

  • 角色: 给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
  • 指示: 对任务进行描述
  • 上下文: 给出与任务相关的其它背景信息(尤其在多轮交互中)
  • 例子: 必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
  • 输入: 任务的输入信息;在提示词中明确的标识出输入
  • 输出: 输出的格式描述,以便后继模块自动解析模型的输出结果

3. 如何写好Prompt工程(调优)

(1)学会定义角色

大模型对 prompt 开头和结尾的内容更敏感。

先定义角色,其实就是在开头把问题域收窄,减少二义性。

(2)学会举例

举例子可以让模型快速get到我们的意图,方便好用,并且效果不错

4. 案例说明

举一个小编深有体会的栗子~

相信读研的小伙伴都会遇到的场景,假如小编现在在写论文,需要将下述这段中文翻译成一段英文:

Yaowei Li等人设计了一个跨模态表示对齐器,使用一组正交基和双门机制来学习全局跨模态对齐,并通过三重对比损失进行全局对齐。

以chatgpt4为例:

prompt:请将下述内容翻译成英文:
【prompt+上述内容】输入到chatgpt4中,得到如下输出:


Yaowei Li and colleagues designed a cross-modal representation aligner that employs a set of orthogonal bases and a dual-gating mechanism to learn global cross-modal alignment. This alignment is achieved through a triplet contrastive loss.


prompt:假如你是一名专业的学术论文撰稿者,你现在正在写论文,对下述内容进行翻译,使其符合学术论文表达: 【prompt+上述内容】 输入到chatgpt4中,得到如下输出:


Yaowei Li et al. have developed a cross-modal representation aligner that leverages a set of orthogonal bases and a dual-gate mechanism to facilitate global cross-modal alignment. The alignment process is optimized using a triplet contrastive loss function to ensure comprehensive alignment across modalities.


5. 参考

相关推荐
羊小猪~~3 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡4 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
哔哩哔哩技术5 小时前
B站S赛直播中的关键事件识别与应用
深度学习
deephub5 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
___Dream5 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码5 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
ssf-yasuo5 小时前
SPIRE: Semantic Prompt-Driven Image Restoration 论文阅读笔记
论文阅读·笔记·prompt
王哈哈^_^6 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
是瑶瑶子啦7 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换
wangyue48 小时前
c# 深度模型入门
深度学习