深入理解Prompt工程

前言:因为大模型的流行,衍生出了一个小领域"Prompt工程",不知道大家会不会跟小编一样,不就是写提示吗,这有什么难的,不过大家还是不要小瞧了Prompt工程,现在很多大模型把会"Prompt工程"作为招聘条件,甚至作为一个岗位,小编在这里浅浅的总结一下

1. 什么是Prompt工程?

Prompt工程(Prompt Engingering),也被称为上下文提示(In-Context Prompting),指的是通过结构化文本等方式来完善提示词,引导LLM输出我们期望的结果。

简单一点来说,就是给LLM模型一些提示或者说指令,让LLM模型清晰准确的知道我们要干什么

  • 那给什么样的提示或者指令能更好更准确输出我们想要的结果呢???怎么设计这样的指令呢???
    这就是Prompt工程要考虑的事情!!!

2. Prompt工程由哪些部分组成?

Prompt工程针对不同的任务设计了不同的提示模版,一般包含下述几部分:

  • 角色: 给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
  • 指示: 对任务进行描述
  • 上下文: 给出与任务相关的其它背景信息(尤其在多轮交互中)
  • 例子: 必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
  • 输入: 任务的输入信息;在提示词中明确的标识出输入
  • 输出: 输出的格式描述,以便后继模块自动解析模型的输出结果

3. 如何写好Prompt工程(调优)

(1)学会定义角色

大模型对 prompt 开头和结尾的内容更敏感。

先定义角色,其实就是在开头把问题域收窄,减少二义性。

(2)学会举例

举例子可以让模型快速get到我们的意图,方便好用,并且效果不错

4. 案例说明

举一个小编深有体会的栗子~

相信读研的小伙伴都会遇到的场景,假如小编现在在写论文,需要将下述这段中文翻译成一段英文:

Yaowei Li等人设计了一个跨模态表示对齐器,使用一组正交基和双门机制来学习全局跨模态对齐,并通过三重对比损失进行全局对齐。

以chatgpt4为例:

prompt:请将下述内容翻译成英文:
【prompt+上述内容】输入到chatgpt4中,得到如下输出:


Yaowei Li and colleagues designed a cross-modal representation aligner that employs a set of orthogonal bases and a dual-gating mechanism to learn global cross-modal alignment. This alignment is achieved through a triplet contrastive loss.


prompt:假如你是一名专业的学术论文撰稿者,你现在正在写论文,对下述内容进行翻译,使其符合学术论文表达: 【prompt+上述内容】 输入到chatgpt4中,得到如下输出:


Yaowei Li et al. have developed a cross-modal representation aligner that leverages a set of orthogonal bases and a dual-gate mechanism to facilitate global cross-modal alignment. The alignment process is optimized using a triplet contrastive loss function to ensure comprehensive alignment across modalities.


5. 参考

相关推荐
要努力啊啊啊2 分钟前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
wufeil18 分钟前
基于功能基团的3D分子生成扩散模型 - D3FG 评测
深度学习·分子生成·药物设计·ai辅助药物设计·计算机辅助药物设计
中杯可乐多加冰34 分钟前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
Andrew_Xzw41 分钟前
数据结构与算法(快速基础C++版)
开发语言·数据结构·c++·python·深度学习·算法
deephub13 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化
audyxiao00114 小时前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
Q同学14 小时前
Qwen3开源最新Embedding模型
深度学习·神经网络·llm
衣乌安、15 小时前
如何写高效的Prompt?
人工智能·prompt
红衣小蛇妖16 小时前
神经网络-Day46
人工智能·深度学习·神经网络
带电的小王16 小时前
【动手学深度学习】3.1. 线性回归
人工智能·深度学习·线性回归