深入理解Prompt工程

前言:因为大模型的流行,衍生出了一个小领域"Prompt工程",不知道大家会不会跟小编一样,不就是写提示吗,这有什么难的,不过大家还是不要小瞧了Prompt工程,现在很多大模型把会"Prompt工程"作为招聘条件,甚至作为一个岗位,小编在这里浅浅的总结一下

1. 什么是Prompt工程?

Prompt工程(Prompt Engingering),也被称为上下文提示(In-Context Prompting),指的是通过结构化文本等方式来完善提示词,引导LLM输出我们期望的结果。

简单一点来说,就是给LLM模型一些提示或者说指令,让LLM模型清晰准确的知道我们要干什么

  • 那给什么样的提示或者指令能更好更准确输出我们想要的结果呢???怎么设计这样的指令呢???
    这就是Prompt工程要考虑的事情!!!

2. Prompt工程由哪些部分组成?

Prompt工程针对不同的任务设计了不同的提示模版,一般包含下述几部分:

  • 角色: 给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
  • 指示: 对任务进行描述
  • 上下文: 给出与任务相关的其它背景信息(尤其在多轮交互中)
  • 例子: 必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
  • 输入: 任务的输入信息;在提示词中明确的标识出输入
  • 输出: 输出的格式描述,以便后继模块自动解析模型的输出结果

3. 如何写好Prompt工程(调优)

(1)学会定义角色

大模型对 prompt 开头和结尾的内容更敏感。

先定义角色,其实就是在开头把问题域收窄,减少二义性。

(2)学会举例

举例子可以让模型快速get到我们的意图,方便好用,并且效果不错

4. 案例说明

举一个小编深有体会的栗子~

相信读研的小伙伴都会遇到的场景,假如小编现在在写论文,需要将下述这段中文翻译成一段英文:

Yaowei Li等人设计了一个跨模态表示对齐器,使用一组正交基和双门机制来学习全局跨模态对齐,并通过三重对比损失进行全局对齐。

以chatgpt4为例:

prompt:请将下述内容翻译成英文:
【prompt+上述内容】输入到chatgpt4中,得到如下输出:


Yaowei Li and colleagues designed a cross-modal representation aligner that employs a set of orthogonal bases and a dual-gating mechanism to learn global cross-modal alignment. This alignment is achieved through a triplet contrastive loss.


prompt:假如你是一名专业的学术论文撰稿者,你现在正在写论文,对下述内容进行翻译,使其符合学术论文表达: 【prompt+上述内容】 输入到chatgpt4中,得到如下输出:


Yaowei Li et al. have developed a cross-modal representation aligner that leverages a set of orthogonal bases and a dual-gate mechanism to facilitate global cross-modal alignment. The alignment process is optimized using a triplet contrastive loss function to ensure comprehensive alignment across modalities.


5. 参考

相关推荐
牧歌悠悠1 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
Archie_IT2 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿2 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Watermelo6175 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink5 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计5 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
政安晨8 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
終不似少年遊*8 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
夏莉莉iy11 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
pchmi11 小时前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#