【深度学习】yolov8-seg分割训练,拼接图的分割复原

文章目录

项目背景

在日常开发中,经常会遇到一些图片是由多个图片拼接来的,如下图就是三个图片横向拼接来的。是否可以利用yolov8-seg模型来识别出这张图片的三张子图区域呢,这是文本要做的事情。

造数据

假设拼接方式有:横向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、横向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、拼接一个22的图(每张图大小resize到一样,总大小12901280)。

这个代码会造分割数据。

bash 复制代码
import os
import random
from PIL import Image


def list_path_all_files(dirname):
    result = []
    for maindir, subdir, file_name_list in os.walk(dirname):
        for filename in file_name_list:
            if filename.lower().endswith('.jpg'):
                apath = os.path.join(maindir, filename)
                result.append(apath)
    return result


def resize_image(image, target_size, resize_by='height'):
    w, h = image.size
    if resize_by == 'height':
        if h != target_size:
            ratio = target_size / h
            new_width = int(w * ratio)
            image = image.resize((new_width, target_size), Image.ANTIALIAS)
    elif resize_by == 'width':
        if w != target_size:
            ratio = target_size / w
            new_height = int(h * ratio)
            image = image.resize((target_size, new_height), Image.ANTIALIAS)
    return image


def create_2x2_image(images):
    target_size = (640, 640)
    new_image = Image.new('RGB', (1280, 1280))
    coords = []
    for i, img in enumerate(images):
        img = img.resize(target_size, Image.ANTIALIAS)
        if i == 0:
            new_image.paste(img, (0, 0))
            coords.append((0, 0, 640, 0, 640, 640, 0, 640))
        elif i == 1:
            new_image.paste(img, (640, 0))
            coords.append((640, 0, 1280, 0, 1280, 640, 640, 640))
        elif i == 2:
            new_image.paste(img, (0, 640))
            coords.append((0, 640, 640, 640, 640, 1280, 0, 1280))
        elif i == 3:
            new_image.paste(img, (640, 640))
            coords.append((640, 640, 1280, 640, 1280, 1280, 640, 1280))
    return new_image, coords


def concatenate_images(image_list, mode='horizontal', target_size=768):
    if mode == 'horizontal':
        resized_images = [resize_image(image, target_size, 'height') for image in image_list]
        total_width = sum(image.size[0] for image in resized_images)
        max_height = target_size
        new_image = Image.new('RGB', (total_width, max_height))
        x_offset = 0
        coords = []
        for image in resized_images:
            new_image.paste(image, (x_offset, 0))
            coords.append(
                (x_offset, 0, x_offset + image.size[0], 0, x_offset + image.size[0], max_height, x_offset, max_height))
            x_offset += image.size[0]
    elif mode == 'vertical':
        resized_images = [resize_image(image, target_size, 'width') for image in image_list]
        total_height = sum(image.size[1] for image in resized_images)
        max_width = target_size
        new_image = Image.new('RGB', (max_width, total_height))
        y_offset = 0
        coords = []
        for image in resized_images:
            new_image.paste(image, (0, y_offset))
            coords.append(
                (0, y_offset, max_width, y_offset, max_width, y_offset + image.size[1], 0, y_offset + image.size[1]))
            y_offset += image.size[1]
    return new_image, coords


def generate_labels(coords, image_size):
    labels = []
    width, height = image_size
    for coord in coords:
        x1, y1, x2, y2, x3, y3, x4, y4 = coord
        x1 /= width
        y1 /= height
        x2 /= width
        y2 /= height
        x3 /= width
        y3 /= height
        x4 /= width
        y4 /= height
        labels.append(f"0 {x1:.5f} {y1:.5f} {x2:.5f} {y2:.5f} {x3:.5f} {y3:.5f} {x4:.5f} {y4:.5f}")
    return labels


def generate_dataset(image_folder, output_folder, label_folder, num_images):
    image_paths = list_path_all_files(image_folder)
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    if not os.path.exists(label_folder):
        os.makedirs(label_folder)

    for i in range(num_images):
        random_choice = random.randint(1, 5)
        if random_choice == 1:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]
            new_image, coords = concatenate_images(selected_images, mode='horizontal')
        elif random_choice == 2:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]
            new_image, coords = concatenate_images(selected_images, mode='horizontal')
        elif random_choice == 3:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]
            new_image, coords = concatenate_images(selected_images, mode='vertical')
        elif random_choice == 4:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]
            new_image, coords = concatenate_images(selected_images, mode='vertical')
        elif random_choice == 5:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(4)]
            new_image, coords = create_2x2_image(selected_images)

        output_image_path = os.path.join(output_folder, f'composite_image_paper_{i + 1:06d}.jpg')
        new_image.save(output_image_path, 'JPEG')

        label_path = os.path.join(label_folder, f'composite_image_paper_{i + 1:06d}.txt')
        labels = generate_labels(coords, new_image.size)
        with open(label_path, 'w') as label_file:
            for label in labels:
                label_file.write(label + '\n')


# 示例用法
image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/10025doc_textPaperShot/'
# image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/'
output_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/images'
label_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/labels'
num_images = 10000
generate_dataset(image_folder, output_folder, label_folder, num_images)

有的图片还是很有难度的,比如这张图,分界不明显,模型是否能搞定是个未知数。当然,我会认为模型可以在一定程度上识别语义或者排版,还是有几率可以识别对的。

训练

我想得到一个后续可以直接用的环境,我直接用docker搞个环境。搞的过程:

bash 复制代码
docker run -it --gpus all --net host  --shm-size=8g -v /ssd/xiedong/yolov8segdir:/ssd/xiedong/yolov8segdir ultralytics/ultralytics:8.2.62  bash
bash 复制代码
docker tag ultralytics/ultralytics:8.2.62 kevinchina/deeplearning:ultralytics-8.2.62
docker push kevinchina/deeplearning:ultralytics-8.2.62

写一个数据集data.yaml:

bash 复制代码
cd /ssd/xiedong/yolov8segdir
vim data.yaml
bash 复制代码
path: /ssd/xiedong/yolov8segdir/composite_images_yolov8seg
train: images # train images (relative to 'path') 128 images
val: images # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: paper

执行这个代码开始训练模型:

bash 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8m-seg.pt")  # load a pretrained model (recommended for training)

# Train the model with 2 GPUs
results = model.train(data="data.yaml", epochs=50, imgsz=640, device=[1, 2, 3], batch=180)

代码会自动下载这个模型到本地,网络问题,也可能需要自己用wget下载到当前训练代码的执行目录。

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt

开始训练:

bash 复制代码
python -m torch.distributed.run --nproc_per_node 3 x03train.py

这样训练就可以了:

看起来任务是简单的:

相关推荐
galileo201625 分钟前
LLM与金融
人工智能
DREAM依旧41 分钟前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
GocNeverGiveUp1 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人2 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条2 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客2 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon2 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客5202 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神2 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
Ven%2 小时前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip