【深度学习】yolov8-seg分割训练,拼接图的分割复原

文章目录

项目背景

在日常开发中,经常会遇到一些图片是由多个图片拼接来的,如下图就是三个图片横向拼接来的。是否可以利用yolov8-seg模型来识别出这张图片的三张子图区域呢,这是文本要做的事情。

造数据

假设拼接方式有:横向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、横向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、拼接一个22的图(每张图大小resize到一样,总大小12901280)。

这个代码会造分割数据。

bash 复制代码
import os
import random
from PIL import Image


def list_path_all_files(dirname):
    result = []
    for maindir, subdir, file_name_list in os.walk(dirname):
        for filename in file_name_list:
            if filename.lower().endswith('.jpg'):
                apath = os.path.join(maindir, filename)
                result.append(apath)
    return result


def resize_image(image, target_size, resize_by='height'):
    w, h = image.size
    if resize_by == 'height':
        if h != target_size:
            ratio = target_size / h
            new_width = int(w * ratio)
            image = image.resize((new_width, target_size), Image.ANTIALIAS)
    elif resize_by == 'width':
        if w != target_size:
            ratio = target_size / w
            new_height = int(h * ratio)
            image = image.resize((target_size, new_height), Image.ANTIALIAS)
    return image


def create_2x2_image(images):
    target_size = (640, 640)
    new_image = Image.new('RGB', (1280, 1280))
    coords = []
    for i, img in enumerate(images):
        img = img.resize(target_size, Image.ANTIALIAS)
        if i == 0:
            new_image.paste(img, (0, 0))
            coords.append((0, 0, 640, 0, 640, 640, 0, 640))
        elif i == 1:
            new_image.paste(img, (640, 0))
            coords.append((640, 0, 1280, 0, 1280, 640, 640, 640))
        elif i == 2:
            new_image.paste(img, (0, 640))
            coords.append((0, 640, 640, 640, 640, 1280, 0, 1280))
        elif i == 3:
            new_image.paste(img, (640, 640))
            coords.append((640, 640, 1280, 640, 1280, 1280, 640, 1280))
    return new_image, coords


def concatenate_images(image_list, mode='horizontal', target_size=768):
    if mode == 'horizontal':
        resized_images = [resize_image(image, target_size, 'height') for image in image_list]
        total_width = sum(image.size[0] for image in resized_images)
        max_height = target_size
        new_image = Image.new('RGB', (total_width, max_height))
        x_offset = 0
        coords = []
        for image in resized_images:
            new_image.paste(image, (x_offset, 0))
            coords.append(
                (x_offset, 0, x_offset + image.size[0], 0, x_offset + image.size[0], max_height, x_offset, max_height))
            x_offset += image.size[0]
    elif mode == 'vertical':
        resized_images = [resize_image(image, target_size, 'width') for image in image_list]
        total_height = sum(image.size[1] for image in resized_images)
        max_width = target_size
        new_image = Image.new('RGB', (max_width, total_height))
        y_offset = 0
        coords = []
        for image in resized_images:
            new_image.paste(image, (0, y_offset))
            coords.append(
                (0, y_offset, max_width, y_offset, max_width, y_offset + image.size[1], 0, y_offset + image.size[1]))
            y_offset += image.size[1]
    return new_image, coords


def generate_labels(coords, image_size):
    labels = []
    width, height = image_size
    for coord in coords:
        x1, y1, x2, y2, x3, y3, x4, y4 = coord
        x1 /= width
        y1 /= height
        x2 /= width
        y2 /= height
        x3 /= width
        y3 /= height
        x4 /= width
        y4 /= height
        labels.append(f"0 {x1:.5f} {y1:.5f} {x2:.5f} {y2:.5f} {x3:.5f} {y3:.5f} {x4:.5f} {y4:.5f}")
    return labels


def generate_dataset(image_folder, output_folder, label_folder, num_images):
    image_paths = list_path_all_files(image_folder)
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    if not os.path.exists(label_folder):
        os.makedirs(label_folder)

    for i in range(num_images):
        random_choice = random.randint(1, 5)
        if random_choice == 1:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]
            new_image, coords = concatenate_images(selected_images, mode='horizontal')
        elif random_choice == 2:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]
            new_image, coords = concatenate_images(selected_images, mode='horizontal')
        elif random_choice == 3:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]
            new_image, coords = concatenate_images(selected_images, mode='vertical')
        elif random_choice == 4:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]
            new_image, coords = concatenate_images(selected_images, mode='vertical')
        elif random_choice == 5:
            selected_images = [Image.open(random.choice(image_paths)) for _ in range(4)]
            new_image, coords = create_2x2_image(selected_images)

        output_image_path = os.path.join(output_folder, f'composite_image_paper_{i + 1:06d}.jpg')
        new_image.save(output_image_path, 'JPEG')

        label_path = os.path.join(label_folder, f'composite_image_paper_{i + 1:06d}.txt')
        labels = generate_labels(coords, new_image.size)
        with open(label_path, 'w') as label_file:
            for label in labels:
                label_file.write(label + '\n')


# 示例用法
image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/10025doc_textPaperShot/'
# image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/'
output_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/images'
label_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/labels'
num_images = 10000
generate_dataset(image_folder, output_folder, label_folder, num_images)

有的图片还是很有难度的,比如这张图,分界不明显,模型是否能搞定是个未知数。当然,我会认为模型可以在一定程度上识别语义或者排版,还是有几率可以识别对的。

训练

我想得到一个后续可以直接用的环境,我直接用docker搞个环境。搞的过程:

bash 复制代码
docker run -it --gpus all --net host  --shm-size=8g -v /ssd/xiedong/yolov8segdir:/ssd/xiedong/yolov8segdir ultralytics/ultralytics:8.2.62  bash
bash 复制代码
docker tag ultralytics/ultralytics:8.2.62 kevinchina/deeplearning:ultralytics-8.2.62
docker push kevinchina/deeplearning:ultralytics-8.2.62

写一个数据集data.yaml:

bash 复制代码
cd /ssd/xiedong/yolov8segdir
vim data.yaml
bash 复制代码
path: /ssd/xiedong/yolov8segdir/composite_images_yolov8seg
train: images # train images (relative to 'path') 128 images
val: images # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: paper

执行这个代码开始训练模型:

bash 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8m-seg.pt")  # load a pretrained model (recommended for training)

# Train the model with 2 GPUs
results = model.train(data="data.yaml", epochs=50, imgsz=640, device=[1, 2, 3], batch=180)

代码会自动下载这个模型到本地,网络问题,也可能需要自己用wget下载到当前训练代码的执行目录。

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt

开始训练:

bash 复制代码
python -m torch.distributed.run --nproc_per_node 3 x03train.py

这样训练就可以了:

看起来任务是简单的:

相关推荐
PPT百科20 分钟前
创建实用PPT演讲者备注的有效方法
人工智能·经验分享·pdf·powerpoint·ppt
lilu88888883 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜3 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记3 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记4 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜4 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、4 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营5 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao5 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain6 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉