JCR一区级 | Matlab实现GA-Transformer-LSTM多变量回归预测

JCR一区级 | Matlab实现GA-Transformer-LSTM多变量回归预测

目录

效果一览





基本介绍

1.【JCR一区级】Matlab实现GA-Transformer-LSTM多变量回归预测,遗传优化算法(GA)优化Transformer-LSTM组合模型(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现GA-Transformer-LSTM多变量回归预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
Donvink9 小时前
【复现DeepSeek-R1之Open R1实战】系列5:SFT源码逐行深度解析
人工智能·深度学习·语言模型·transformer
机器学习之心13 小时前
机器人路径规划 | 基于极光PLO优化算法的机器人三维路径规划Matlab代码
算法·matlab·机器人·三维路径规划
龚大龙14 小时前
机器学习(李宏毅)——RNN
人工智能·rnn·机器学习·lstm
赵钰老师15 小时前
【深度学习】遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
pytorch·深度学习·目标检测·机器学习·数据分析·cnn·transformer
IT猿手16 小时前
2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集,MATLAB
数据库·人工智能·算法·机器学习·matlab
凳子花❀20 小时前
DeepSeek R1原理
transformer·ai大模型·deepseek·deepseek r1
studyer_domi1 天前
matlab质子磁力仪传感器线圈参数绘图
人工智能·matlab
weixin_贾2 天前
遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
目标检测·cnn·transformer
~|Bernard|2 天前
conda和conda-forge区别?怎么选用?
人工智能·深度学习·conda·transformer
青橘MATLAB学习2 天前
模糊综合评价法:原理、步骤与MATLAB实现
开发语言·算法·数学建模·matlab·分类