语言模型及数据集

一、定义

1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。

2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。

3、计数建模

(1)其中𝑛(𝑥)和𝑛(𝑥,𝑥′)分别是单个单词和连续单词对的出现次数

4、N元语法

5、用空间换时间:统计单词在数据集中的出现次数, 然后将其除以整个语料库中的单词总数。

6、*齐普夫定律:*词频以一种明确的方式迅速衰减。 将前几个单词作为例外消除后,剩余的所有单词大致遵循双对数坐标图上的一条直线。

二、构建自然语言统计

复制代码
import random
import torch
from d2l import torch as d2l

tokens = d2l.tokenize(d2l.read_time_machine())
# 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]

1、N元语法

复制代码
#一元
freqs = [freq for token, freq in vocab.token_freqs]
#二元
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])]
bigram_vocab = d2l.Vocab(bigram_tokens)
#三元
trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])]
trigram_vocab = d2l.Vocab(trigram_tokens)

2、随机采样

复制代码
def seq_data_iter_random(corpus, batch_size, num_steps):  #@save
    """使用随机抽样生成一个小批量子序列"""
    # 随机对序列进行分区
    corpus = corpus[random.randint(0, num_steps - 1):]
    # 减去1,是因为我们需要考虑标签
    num_subseqs = (len(corpus) - 1) // num_steps
    # 长度为num_steps的子序列的起始索引
    initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
    # 在随机抽样的迭代过程中,
    random.shuffle(initial_indices)

    def data(pos):
        # 返回从pos位置开始的长度为num_steps的序列
        return corpus[pos: pos + num_steps]

    #因为subseq有若干个batche
    num_batches = num_subseqs // batch_size
    for i in range(0, batch_size * num_batches, batch_size):
        # 在这里,initial_indices包含子序列的随机起始索引
        initial_indices_per_batch = initial_indices[i: i + batch_size]
        #基于到目前为止我们看到的词元来预测下一个词元, 标签是移位了一个词元的原始序列
        X = [data(j) for j in initial_indices_per_batch]
        Y = [data(j + 1) for j in initial_indices_per_batch]
        yield torch.tensor(X), torch.tensor(Y)

3、顺序分区

复制代码
def seq_data_iter_sequential(corpus, batch_size, num_steps):  #@save
    """使用顺序分区生成一个小批量子序列"""
    # 从随机偏移量开始划分序列
    offset = random.randint(0, num_steps)
    num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = torch.tensor(corpus[offset: offset + num_tokens])
    Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_steps * num_batches, num_steps):
        X = Xs[:, i: i + num_steps]
        Y = Ys[:, i: i + num_steps]
        yield X, Y

4、两个采样函数包装到一个类中

复制代码
class SeqDataLoader:  #@save
    """加载序列数据的迭代器"""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = d2l.seq_data_iter_random
        else:
            self.data_iter_fn = d2l.seq_data_iter_sequential
        self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)

5、同时返回数据迭代器和词表

复制代码
def load_data_time_machine(batch_size, num_steps,  #@save
                           use_random_iter=False, max_tokens=10000):
    """返回时光机器数据集的迭代器和词表"""
    data_iter = SeqDataLoader(
        batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab

三、总结

1、语言模型是自然语言处理的关键。

2、𝑛元语法通过截断相关性,为处理长序列提供了一种实用的模型。

3、长序列存在一个问题:它们很少出现或者从不出现。

4、齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他𝑛元语法。

5、读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。

相关推荐
四口鲸鱼爱吃盐1 分钟前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空14 分钟前
Python调用open ai接口
人工智能·python
睡觉狂魔er15 分钟前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan72438 分钟前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf40 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零11 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
爱喝热水的呀哈喽1 小时前
《机器学习》支持向量机
人工智能·决策树·机器学习
minstbe1 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
月眠老师1 小时前
AI在生活各处的利与弊
人工智能
四口鲸鱼爱吃盐1 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类