语言模型及数据集

一、定义

1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。

2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。

3、计数建模

(1)其中𝑛(𝑥)和𝑛(𝑥,𝑥′)分别是单个单词和连续单词对的出现次数

4、N元语法

5、用空间换时间:统计单词在数据集中的出现次数, 然后将其除以整个语料库中的单词总数。

6、*齐普夫定律:*词频以一种明确的方式迅速衰减。 将前几个单词作为例外消除后,剩余的所有单词大致遵循双对数坐标图上的一条直线。

二、构建自然语言统计

复制代码
import random
import torch
from d2l import torch as d2l

tokens = d2l.tokenize(d2l.read_time_machine())
# 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]

1、N元语法

复制代码
#一元
freqs = [freq for token, freq in vocab.token_freqs]
#二元
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])]
bigram_vocab = d2l.Vocab(bigram_tokens)
#三元
trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])]
trigram_vocab = d2l.Vocab(trigram_tokens)

2、随机采样

复制代码
def seq_data_iter_random(corpus, batch_size, num_steps):  #@save
    """使用随机抽样生成一个小批量子序列"""
    # 随机对序列进行分区
    corpus = corpus[random.randint(0, num_steps - 1):]
    # 减去1,是因为我们需要考虑标签
    num_subseqs = (len(corpus) - 1) // num_steps
    # 长度为num_steps的子序列的起始索引
    initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
    # 在随机抽样的迭代过程中,
    random.shuffle(initial_indices)

    def data(pos):
        # 返回从pos位置开始的长度为num_steps的序列
        return corpus[pos: pos + num_steps]

    #因为subseq有若干个batche
    num_batches = num_subseqs // batch_size
    for i in range(0, batch_size * num_batches, batch_size):
        # 在这里,initial_indices包含子序列的随机起始索引
        initial_indices_per_batch = initial_indices[i: i + batch_size]
        #基于到目前为止我们看到的词元来预测下一个词元, 标签是移位了一个词元的原始序列
        X = [data(j) for j in initial_indices_per_batch]
        Y = [data(j + 1) for j in initial_indices_per_batch]
        yield torch.tensor(X), torch.tensor(Y)

3、顺序分区

复制代码
def seq_data_iter_sequential(corpus, batch_size, num_steps):  #@save
    """使用顺序分区生成一个小批量子序列"""
    # 从随机偏移量开始划分序列
    offset = random.randint(0, num_steps)
    num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = torch.tensor(corpus[offset: offset + num_tokens])
    Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_steps * num_batches, num_steps):
        X = Xs[:, i: i + num_steps]
        Y = Ys[:, i: i + num_steps]
        yield X, Y

4、两个采样函数包装到一个类中

复制代码
class SeqDataLoader:  #@save
    """加载序列数据的迭代器"""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = d2l.seq_data_iter_random
        else:
            self.data_iter_fn = d2l.seq_data_iter_sequential
        self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)

5、同时返回数据迭代器和词表

复制代码
def load_data_time_machine(batch_size, num_steps,  #@save
                           use_random_iter=False, max_tokens=10000):
    """返回时光机器数据集的迭代器和词表"""
    data_iter = SeqDataLoader(
        batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab

三、总结

1、语言模型是自然语言处理的关键。

2、𝑛元语法通过截断相关性,为处理长序列提供了一种实用的模型。

3、长序列存在一个问题:它们很少出现或者从不出现。

4、齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他𝑛元语法。

5、读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。

相关推荐
灰灰勇闯IT2 分钟前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
灰灰勇闯IT3 分钟前
从零到一——CANN 社区与 cann-recipes-infer 实践样例的启示
人工智能
小白狮ww6 分钟前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
lili-felicity8 分钟前
CANN优化LLaMA大语言模型推理:KV-Cache与FlashAttention深度实践
人工智能·语言模型·llama
程序猿追10 分钟前
深度解码昇腾 AI 算力引擎:CANN Runtime 核心架构与技术演进
人工智能·架构
金融RPA机器人丨实在智能10 分钟前
Android Studio开发App项目进入AI深水区:实在智能Agent引领无代码交互革命
android·人工智能·ai·android studio
lili-felicity14 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性14 分钟前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器15 分钟前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
晚霞的不甘18 分钟前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频