import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
from torch_geometric.loader import NeighborSampler
# 定义图神经网络模型
class GCN(torch.nn.Module):
def __init__(self, num_features, num_classes):
super(GCN, self).__init__()
self.conv1 = GCNConv(num_features, 16)
self.conv2 = GCNConv(16, num_classes)
def forward(self, x, edge_index, size):
# 使用邻居信息进行采样
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index, size)
return F.log_softmax(x, dim=1)
# 加载数据集
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# 创建邻居采样迭代器
train_loader = NeighborSampler(data.edge_index,
node_idx=data.train_mask,
sizes=[10, 10], # 每层采样的邻居数
batch_size=64, # 每次批次的节点数
num_nodes=data.num_nodes)
# 初始化模型和优化器
model = GCN(num_features=dataset.num_node_features, num_classes=dataset.num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# 训练模型
def train(loader, model, optimizer):
model.train()
total_loss = 0
for batch_size, n_id, adj in loader:
optimizer.zero_grad()
# 通过采样得到节点特征和边列表
x = data.x[n_id].to(device)
out = model(x, adj.edge_index, adj.size)
loss = F.nll_loss(out[adj.node_idx], data.y[adj.node_idx].to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss
# 评估模型
def test(model):
model.eval()
with torch.no_grad():
out = model(data.x.to(device), data.edge_index.to(device), data.num_nodes)
pred = out.argmax(dim=1)
correct = pred[data.test_mask.to(device)] == data.y[data.test_mask.to(device)]
acc = int(correct.sum()) / int(data.test_mask.sum())
return acc
# 训练和验证
for epoch in range(200):
loss = train(train_loader, model, optimizer)
if epoch % 20 == 0:
train_acc = test(model)
print(f'Epoch {epoch}, Loss: {loss:.4f}, Train Accuracy: {train_acc:.4f}')
# 测试模型
test_acc = test(model)
print(f'Test Accuracy: {test_acc:.4f}')
大规模图数据思路代码
医学小达人2024-07-27 22:44
相关推荐
天上路人几秒前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析小白学大数据7 分钟前
Scrapy框架下地图爬虫的进度监控与优化策略浊酒南街8 分钟前
TensorFlow之微分求导立秋678914 分钟前
用Python绘制梦幻星空alpszero26 分钟前
YOLO11解决方案之对象裁剪探索白云千载尽1 小时前
相机、雷达标定工具,以及雷达自动标定的思路咕噜咕噜啦啦1 小时前
python爬虫实战训练盛夏绽放1 小时前
Python字符串常用内置函数详解我想睡觉2611 小时前
Python训练营打卡DAY27蹦蹦跳跳真可爱5891 小时前
Python----神经网络(基于DNN的风电功率预测)