大规模图数据思路代码

复制代码
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
from torch_geometric.loader import NeighborSampler

# 定义图神经网络模型
class GCN(torch.nn.Module):
    def __init__(self, num_features, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(num_features, 16)
        self.conv2 = GCNConv(16, num_classes)

    def forward(self, x, edge_index, size):
        # 使用邻居信息进行采样
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index, size)
        return F.log_softmax(x, dim=1)


# 加载数据集
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]

# 创建邻居采样迭代器
train_loader = NeighborSampler(data.edge_index, 
                                node_idx=data.train_mask, 
                                sizes=[10, 10],  # 每层采样的邻居数
                                batch_size=64,   # 每次批次的节点数
                                num_nodes=data.num_nodes)

# 初始化模型和优化器
model = GCN(num_features=dataset.num_node_features, num_classes=dataset.num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

# 训练模型
def train(loader, model, optimizer):
    model.train()
    total_loss = 0
    for batch_size, n_id, adj in loader:
        optimizer.zero_grad()
        # 通过采样得到节点特征和边列表
        x = data.x[n_id].to(device)
        out = model(x, adj.edge_index, adj.size)
        loss = F.nll_loss(out[adj.node_idx], data.y[adj.node_idx].to(device))
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    return total_loss

# 评估模型
def test(model):
    model.eval()
    with torch.no_grad():
        out = model(data.x.to(device), data.edge_index.to(device), data.num_nodes)
    pred = out.argmax(dim=1)
    correct = pred[data.test_mask.to(device)] == data.y[data.test_mask.to(device)]
    acc = int(correct.sum()) / int(data.test_mask.sum())
    return acc

# 训练和验证
for epoch in range(200):
    loss = train(train_loader, model, optimizer)
    if epoch % 20 == 0:
        train_acc = test(model)
        print(f'Epoch {epoch}, Loss: {loss:.4f}, Train Accuracy: {train_acc:.4f}')

# 测试模型
test_acc = test(model)
print(f'Test Accuracy: {test_acc:.4f}')
相关推荐
骚戴16 分钟前
n1n:从替代LiteLLM Proxy自建网关到企业级统一架构的进阶之路
人工智能·python·大模型·llm·gateway·api
秋氘渔19 分钟前
智演沙盘 —— 基于大模型的智能面试评估系统
python·mysql·django·drf
爱笑的眼睛1122 分钟前
超越AdamW:优化器算法的深度实现、演进与自定义框架设计
java·人工智能·python·ai
qq_3363139323 分钟前
java基础-stream流练习
java·开发语言·python
长安牧笛35 分钟前
设计职场新人社交恐惧破冰工具,生成趣味自我介绍模板,团建互动小游戏,帮助新人快速融入团队。
python
声声codeGrandMaster38 分钟前
线性回归实战下与深度学习概念
深度学习·算法·线性回归
木泽八1 小时前
python实现pdf拆分与合并
服务器·python·pdf
拾贰_C1 小时前
[Python | pytorch | torchvision ] models like ResNet... 命名变量说明
开发语言·pytorch·python
清水白石0081 小时前
《Python 装饰器模式与代理模式深度剖析:从语法技巧到架构实战》
python·代理模式·装饰器模式
dagouaofei1 小时前
AI自动生成PPT工具横评,真实使用感受分享
人工智能·python·powerpoint