Yolov5-v7.0使用CBAM注意力机制记录

Yolov5-v7.0使用CBAM注意力机制记录

一、CBAM实现代码

在model/common.py文件中加入如下代码:

python 复制代码
#############CBAM注意力机制##############
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu = nn.ReLU()
        self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
        max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
        out = self.sigmoid(avg_out + max_out)
        return out


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        # (特征图的大小-算子的size+2*padding)/步长+1
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # 1*h*w
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        # 2*h*w
        x = self.conv(x)
        # 1*h*w
        return self.sigmoid(x)


class CBAM(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, ratio=16, kernel_size=7):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CBAM, self).__init__()
        self.channel_attention = ChannelAttention(c1, ratio)
        self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
        out = self.channel_attention(x) * x
        # c*h*w
        # c*h*w * 1*h*w
        out = self.spatial_attention(out) * out
        return out

加在代码最后就行。

二、注册CBAM机制

在model/yolo.py文件中修改。

第一处:

python 复制代码
from models.common import

引入CBAM。

第二处:

python 复制代码
def parse_model(d, ch):

继续增加CBAM

三、更改yolov5s.yaml文件

yolov5s.yaml文件是模型结构文件,增加CBAM机制

python 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
   [-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, CBAM, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 10
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

四、修改train.py文件

增加注意力机制后,运行train.py文件会报错:

python 复制代码
RuntimeError: adaptive_max_pool2d_backward_cuda does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True)'. You can turn off determinism just for this operation, or you can use the 'warn_only=True' option, if that's acceptable for your application. You can also file an issue at https://github.com/pytorch/pytorch/issues to help us prioritize adding deterministic support for this operation.

需要修改train.py文件。在代码:

python 复制代码
scaler.scale(loss).backward()

前面加上:

python 复制代码
torch.use_deterministic_algorithms(False)

修改后如下:

五、训练

训练时留意一下CBAM是否生效

相关推荐
Ingsuifon3 小时前
yolov5模型迁移笔记
笔记·yolo
FL162386312913 小时前
[C#][winform]基于yolov11的阿尔兹海默症严重程度检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面
yolo
AI浩14 小时前
SMA-YOLO:一种基于无参注意力机制和多尺度特征融合的改进YOLOv8算法,用于无人机图像中的小目标检测
算法·yolo·无人机
云空14 小时前
《Debian 系统上部署 YOLO11》
人工智能·神经网络·yolo·debian
乐园游梦记16 小时前
使用OpenCvSharp的DNN模块加载YOLOv11的ONNX模型,涉及将模型文件路径传递给DNN模块的相关函数。
人工智能·深度学习·opencv·yolo·c#·dnn
乐园游梦记16 小时前
在VS的winform中基于C#和OPenCV实现基于python的yolo模型深度学习的使用与训练
python·深度学习·opencv·yolo·c#·visual studio
FL16238631291 天前
[C#][winform]基于yolov11的鱼病害检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面
yolo
Coding茶水间1 天前
基于深度学习的船舶检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
羊羊小栈2 天前
基于「YOLO姿态识别 + AI大模型分析」的智能健身辅助系统(vue+flask+AI算法)
vue.js·人工智能·yolo·毕业设计·创业创新·大作业