语义分割介绍

1. 定义

语义指具有人们可用语言探讨的意义,分割指图像分割。

语义分割(semantic segmentation)能够将整张图的每个部分分割开 ,使每个部分都有一定类别意义(语义) ,让计算机可以理解图像。

语义分割是以描边的形式 ,将整张图不留缝隙地分割成每个区域,每个区域是一个类别没有类别的默认为背景background

此外,有两个与语义分割类似的说法,但不是同一个概念:

  • 实例分割: 实例分割会对同一类的不同对象 进行分割。比如说,语义分割会将车分为一类,人分为另一类。而实例分割会将车继续进行分类每一辆车都是一个实例类别
  • 全局分割: 简单地来讲,全景分割是实例分割与语义分割的结合 。全景分割中的每一个像素点都会分成对应的语义标签和实例标签。如果一种类别里有多个实例,会用不同的颜色进行区分

2 常用的数据集

2.1 PASCAL VOC

介绍

使用一系列PNG图片,图片中的每个像素都记录了所属的类别索引 ,也就是像素值,不同的像素值代表不同的类别。

注意,这些PNG是使用调色板 的方式进行存储,通过像素值来表示颜色 ,如像素1对应(127,0,0)。因此这些图片是单通道的图片

由下图可知,对于边缘与不确定的像素 会使用特殊的颜色 来标记,使用了像素值为255 进行填充。而背景则使用像素值0来填充。

2.2 MS COCO

使用该数据集进行语法分割时,会针对图像中的每个目标都记录了一个多边形的坐标这个多边形框柱了目标

这个数据可以用于语义分割与实例分割。

3. 结果的表现形式

不同像素值代表不同的类别,属于同一类别的像素有相同的像素值 。利用像素值来代表各个类别

在这种形式中使用了调色板,也就是每个像素值都对应着一个颜色

4. 评价指标

首先是一些标识:

  • n i j n_{ij} nij:类别 i i i被预测为类别 j j j的像素个数
  • n c l s n_{cls} ncls:类别的个数,包含背景
  • t i = ∑ j n j i t_i=\textstyle \sum_{j}^{}n_{ji} ti=∑jnji:类别 i i i有多少个像素(真实标签)

4.1 Pixel Accuracy (Global Acc)

正确预测的像素个数 / 总像素个数

4.2 mean Accuracy

  1. 先求出每个类别的得分:对于当前类别,预测正确的个数/当前类别的总个数。
  2. 然后将这些得分求和。
  3. 最后除于类别的个数

4.3 IoU

分母为真实类型为 i i i的像素 和 被预测类型为 i i i的像素的并集

分子为预测正确的像素个数,两者消除得到类别 i i i的IoU得分

4.4 mean IoU

对全部类别的IoU得分求和,然取平均值。

4.5 例子

真实标签与预测标签的分布情况如图所示,并且结合两个情况得到预测正确与错误的情况,这里用一个矩阵表示,对象线上的总和为预测正确的个数,其余为预测错误的。

通过上述数据,可以计算出性能评分:

① global accuracy

② mean accuracy

这里计算了每个类别的得分

③ IoU

5. 标注工具

① Labelme

② EISeg

相关推荐
三月七(爱看动漫的程序员)8 分钟前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5891 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉
deephub1 小时前
计算加速技术比较分析:GPU、FPGA、ASIC、TPU与NPU的技术特性、应用场景及产业生态
人工智能·深度学习·gpu·计算加速
杰克逊的日记2 小时前
大语言模型应用和训练(人工智能)
人工智能·算法·语言模型
意.远2 小时前
PyTorch参数管理详解:从访问到初始化与共享
人工智能·pytorch·python·深度学习
非优秀程序员2 小时前
分享 | 我遇到的质量最高的MCP服务器汇总
人工智能
Sui_Network2 小时前
Webacy 利用 Walrus 技术构建链上风险分析决策层
人工智能·游戏·web3·去中心化·区块链
leo03082 小时前
详解相机的内参和外参,以及内外参的标定方法
计算机视觉·机器人·相机标定
知来者逆3 小时前
计算机视觉——为什么 mAP 是目标检测的黄金标准
图像处理·人工智能·深度学习·目标检测·计算机视觉
MobiCetus3 小时前
Deep Reinforcement Learning for Robotics翻译解读2
人工智能·深度学习·神经网络·机器学习·生成对抗网络·计算机视觉·数据挖掘