1. 背景:
使用 MindSpore 学习神经网络,打卡第 22 天;主要内容也依据 mindspore 的学习记录。
2. DCGAN 介绍:
MindSpore 的 DCGAN 的图像风格迁移互换
DCGAN(深度卷积对抗生成网络), 是 GAN 网络的扩展;不同之处在于DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。
-
主要创新点:
a. 提出并评估了一组对卷积 GAN 架构拓扑的约束,这些约束使它们在大多数设置下都能稳定地进行训练。我们将这类架构命名为深度卷积 GAN (DCGAN)
b. 使用经过训练的判别器进行图像分类任务,显示出与其他无监督算法相比的竞争性能
c. 将GANs学习到的滤波器可视化,并实证地表明,特定的滤波器已经学会了绘制特定的对象。
d. 生成器具有有趣的向量算术特性,允许轻松操作生成样本的许多语义质量。
-
主要流程:
a. 判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。
b. 生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量 𝑧,输出是3x64x64的RGB图像。
3. 具体实现:
mindspore 使用 GCGAN 生成漫画图像;
3.1 数据下载:
python
from download import download
url = "https://download.mindspore.cn/dataset/Faces/faces.zip"
path = download(url, "./faces", kind="zip", replace=True)
3.2 数据处理:
- 参数输入:
python
batch_size = 128 # 批量大小
image_size = 64 # 训练图像空间大小
nc = 3 # 图像彩色通道数
nz = 100 # 隐向量的长度
ngf = 64 # 特征图在生成器中的大小
ndf = 64 # 特征图在判别器中的大小
num_epochs = 3 # 训练周期数
lr = 0.0002 # 学习率
beta1 = 0.5 # Adam优化器的beta1超参数
- 数据处理与增强操作:
python
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
def create_dataset_imagenet(dataset_path):
"""数据加载"""
dataset = ds.ImageFolderDataset(dataset_path,
num_parallel_workers=4,
shuffle=True,
decode=True)
# 数据增强操作
transforms = [
vision.Resize(image_size),
vision.CenterCrop(image_size),
vision.HWC2CHW(),
lambda x: ((x / 255).astype("float32"))
]
# 数据映射操作
dataset = dataset.project('image')
dataset = dataset.map(transforms, 'image')
# 批量操作
dataset = dataset.batch(batch_size)
return dataset
dataset = create_dataset_imagenet('./faces')
- 将函数数据转换成字典迭代器,并可视化训练数据
python
import matplotlib.pyplot as plt
def plot_data(data):
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data[0][:30], 1):
plt.subplot(3, 10, i)
plt.axis("off")
plt.imshow(image.transpose(1, 2, 0))
plt.show()
sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)
3.3 构造网络
模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。
- 生成器的结构如下所示:
生成器G的功能是将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列Conv2dTranspose转置卷积层来完成的,每个层都与BatchNorm2d层和ReLu激活层配对,输出数据会经过tanh函数,使其返回[-1,1]的数据范围内
代码如下:
python
import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normal
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)
class Generator(nn.Cell):
"""DCGAN网络生成器"""
def __init__(self):
super(Generator, self).__init__()
self.generator = nn.SequentialCell(
nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),
nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
nn.ReLU(),
nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
nn.ReLU(),
nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
nn.ReLU(),
nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf, gamma_init=gamma_init),
nn.ReLU(),
nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),
nn.Tanh()
)
def construct(self, x):
return self.generator(x)
generator = Generator()
- 构建判别器:
判别器其实是二分类网络模型,判定图片是真实图的概率;
通过一系列的 Conv2d、BatchNorm2d 和 LeakyReLU 层对其进行处理,最后通过Sigmoid激活函数得到最终概率。
python
class Discriminator(nn.Cell):
"""DCGAN网络判别器"""
def __init__(self):
super(Discriminator, self).__init__()
self.discriminator = nn.SequentialCell(
nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),
nn.LeakyReLU(0.2),
nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
nn.LeakyReLU(0.2),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
nn.LeakyReLU(0.2),
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),
nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
nn.LeakyReLU(0.2),
nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),
)
self.adv_layer = nn.Sigmoid()
def construct(self, x):
out = self.discriminator(x)
out = out.reshape(out.shape[0], -1)
return self.adv_layer(out)
discriminator = Discriminator()
3.4 模型训练
- 损失函数:
当定义了D和G后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss。
python
# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')
# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')
- 训练模型:
a. 训练判别器:
目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化 𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)) 的值.
b. 训练生成器:
我们希望通过最小化 𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))) 来训练生成器,以产生更好的虚假图像。
python
def generator_forward(real_imgs, valid):
# 将噪声采样为发生器的输入
z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))
# 生成一批图像
gen_imgs = generator(z)
# 损失衡量发生器绕过判别器的能力
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
return g_loss, gen_imgs
def discriminator_forward(real_imgs, gen_imgs, valid, fake):
# 衡量鉴别器从生成的样本中对真实样本进行分类的能力
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs), fake)
d_loss = (real_loss + fake_loss) / 2
return d_loss
grad_generator_fn = ms.value_and_grad(generator_forward, None,
optimizer_G.parameters,
has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,
optimizer_D.parameters)
@ms.jit
def train_step(imgs):
valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)
(g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)
optimizer_G(g_grads)
d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)
optimizer_D(d_grads)
return g_loss, d_loss, gen_imgs
- 循环网络
每经过50次迭代,就收集生成器和判别器的损失,以便于后面绘制训练过程中损失函数的图像。
python
import mindspore
G_losses = []
D_losses = []
image_list = []
total = dataset.get_dataset_size()
for epoch in range(num_epochs):
generator.set_train()
discriminator.set_train()
# 为每轮训练读入数据
for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):
g_loss, d_loss, gen_imgs = train_step(imgs)
if i % 100 == 0 or i == total - 1:
# 输出训练记录
print('[%2d/%d][%3d/%d] Loss_D:%7.4f Loss_G:%7.4f' % (
epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))
D_losses.append(d_loss.asnumpy())
G_losses.append(g_loss.asnumpy())
# 每个epoch结束后,使用生成器生成一组图片
generator.set_train(False)
fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img = generator(fixed_noise)
image_list.append(img.transpose(0, 2, 3, 1).asnumpy())
# 保存网络模型参数为ckpt文件
mindspore.save_checkpoint(generator, "./generator.ckpt")
mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")
3.6 结果展示:
结果中第一行为原图,第二行为对于生成的结果图:
- 描绘 D 和 G 损失与训练迭代关系图
python
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G", color='blue')
plt.plot(D_losses, label="D", color='orange')
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
- 训练过程中,通过隐向量 fixed_noise 生成图像
python
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def showGif(image_list):
show_list = []
fig = plt.figure(figsize=(8, 3), dpi=120)
for epoch in range(len(image_list)):
images = []
for i in range(3):
row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)
images.append(row)
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
show_list.append([plt.imshow(img)])
ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
ani.save('./dcgan.gif', writer='pillow', fps=1)
showGif(image_list)
- 加载生成器网络模型参数生成图像
python
# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)
fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()
fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):
images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()