注意力机制和自注意力机制模块的相关代码实现/缝合模块/即插即用模块

复制代码
注意力机制

import torch
import torch.nn as nn

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.attention = nn.Linear(hidden_dim, 1, bias=False)

    def forward(self, encoder_outputs):
        # encoder_outputs shape: (batch_size, sequence_length, hidden_dim)
        attn_weights = self.attention(encoder_outputs)  # (batch_size, sequence_length, 1)
        attn_weights = torch.softmax(attn_weights, dim=1)  # (batch_size, sequence_length, 1)
        context = torch.sum(attn_weights * encoder_outputs, dim=1)  # (batch_size, hidden_dim)
        return context, attn_weights

# 示例用法
batch_size = 2
sequence_length = 5
hidden_dim = 10

encoder_outputs = torch.randn(batch_size, sequence_length, hidden_dim)
attention_layer = Attention(hidden_dim)
context, attn_weights = attention_layer(encoder_outputs)

print("Context:", context)
print("Attention Weights:", attn_weights)

自注意力机制

import torch

import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):

def init(self, embed_dim, num_heads):

super(MultiHeadSelfAttention, self).init()

self.embed_dim = embed_dim

self.num_heads = num_heads

self.head_dim = embed_dim // num_heads

assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

self.qkv_proj = nn.Linear(embed_dim, embed_dim * 3)

self.o_proj = nn.Linear(embed_dim, embed_dim)

self.softmax = nn.Softmax(dim=-1)

def forward(self, x):

batch_size, seq_length, embed_dim = x.size()

qkv = self.qkv_proj(x) # (batch_size, seq_length, embed_dim * 3)

qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)

qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim)

q, k, v = qkv.chunk(3, dim=-1) # Each has shape (batch_size, num_heads, seq_length, head_dim)

attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) # Scaled dot-product

attn_weights = self.softmax(attn_weights) # (batch_size, num_heads, seq_length, seq_length)

attn_output = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_length, head_dim)

attn_output = attn_output.permute(0, 2, 1, 3).contiguous()

attn_output = attn_output.reshape(batch_size, seq_length, embed_dim)

output = self.o_proj(attn_output)

return output, attn_weights

示例用法

batch_size = 2

seq_length = 5

embed_dim = 16

num_heads = 4

x = torch.randn(batch_size, seq_length, embed_dim)

self_attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)

output, attn_weights = self_attention_layer(x)

print("Output:", output)

print("Attention Weights:", attn_weights)

相关推荐
Forrit5 小时前
ptyorch安装
pytorch
yLDeveloper6 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235867 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs7 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
2的n次方_8 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训8 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床10 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI10 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏11 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络