注意力机制和自注意力机制模块的相关代码实现/缝合模块/即插即用模块

复制代码
注意力机制

import torch
import torch.nn as nn

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.attention = nn.Linear(hidden_dim, 1, bias=False)

    def forward(self, encoder_outputs):
        # encoder_outputs shape: (batch_size, sequence_length, hidden_dim)
        attn_weights = self.attention(encoder_outputs)  # (batch_size, sequence_length, 1)
        attn_weights = torch.softmax(attn_weights, dim=1)  # (batch_size, sequence_length, 1)
        context = torch.sum(attn_weights * encoder_outputs, dim=1)  # (batch_size, hidden_dim)
        return context, attn_weights

# 示例用法
batch_size = 2
sequence_length = 5
hidden_dim = 10

encoder_outputs = torch.randn(batch_size, sequence_length, hidden_dim)
attention_layer = Attention(hidden_dim)
context, attn_weights = attention_layer(encoder_outputs)

print("Context:", context)
print("Attention Weights:", attn_weights)

自注意力机制

import torch

import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):

def init(self, embed_dim, num_heads):

super(MultiHeadSelfAttention, self).init()

self.embed_dim = embed_dim

self.num_heads = num_heads

self.head_dim = embed_dim // num_heads

assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

self.qkv_proj = nn.Linear(embed_dim, embed_dim * 3)

self.o_proj = nn.Linear(embed_dim, embed_dim)

self.softmax = nn.Softmax(dim=-1)

def forward(self, x):

batch_size, seq_length, embed_dim = x.size()

qkv = self.qkv_proj(x) # (batch_size, seq_length, embed_dim * 3)

qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)

qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim)

q, k, v = qkv.chunk(3, dim=-1) # Each has shape (batch_size, num_heads, seq_length, head_dim)

attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) # Scaled dot-product

attn_weights = self.softmax(attn_weights) # (batch_size, num_heads, seq_length, seq_length)

attn_output = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_length, head_dim)

attn_output = attn_output.permute(0, 2, 1, 3).contiguous()

attn_output = attn_output.reshape(batch_size, seq_length, embed_dim)

output = self.o_proj(attn_output)

return output, attn_weights

示例用法

batch_size = 2

seq_length = 5

embed_dim = 16

num_heads = 4

x = torch.randn(batch_size, seq_length, embed_dim)

self_attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)

output, attn_weights = self_attention_layer(x)

print("Output:", output)

print("Attention Weights:", attn_weights)

相关推荐
Felaim3 分钟前
Sparse4D 时序输入和 Feature Queue 详解
人工智能·深度学习·自动驾驶
LaughingZhu32 分钟前
Product Hunt 每日热榜 | 2025-12-13
人工智能·经验分享·神经网络·搜索引擎·产品运营
老马啸西风40 分钟前
成熟企业级技术平台 MVE-010-IGA(Identity Governance & Administration,身份治理与管理)平台
人工智能·深度学习·算法·职场和发展
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-app 管理平台
人工智能·深度学习·算法·职场和发展
硅谷秋水1 小时前
LLM的测试-时规模化:基于子问题结构视角的综述
人工智能·深度学习·机器学习·语言模型
Boxsc_midnight1 小时前
【规范驱动的开发方式】之【spec-kit】 的安装入门指南
人工智能·python·深度学习·软件工程·设计规范
阿正的梦工坊3 小时前
RLVE:通过自适应可验证环境扩展语言模型的强化学习
人工智能·深度学习·语言模型
FF-Studio3 小时前
解决 NVIDIA RTX 50 系列 (sm_120) 架构下的 PyTorch 与 Unsloth 依赖冲突
pytorch·自然语言处理·cuda·unsloth·rtx 50 series
nwsuaf_huasir3 小时前
深度学习2-pyTorch学习-张量基本操作
pytorch·深度学习·学习
猫天意3 小时前
【即插即用模块】AAAI2026 | MHCB+DPA:特征提取+双池化注意力,涨点必备,SCI保二争一!彻底疯狂!!!
网络·人工智能·深度学习·算法·yolo