注意力机制和自注意力机制模块的相关代码实现/缝合模块/即插即用模块

复制代码
注意力机制

import torch
import torch.nn as nn

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.attention = nn.Linear(hidden_dim, 1, bias=False)

    def forward(self, encoder_outputs):
        # encoder_outputs shape: (batch_size, sequence_length, hidden_dim)
        attn_weights = self.attention(encoder_outputs)  # (batch_size, sequence_length, 1)
        attn_weights = torch.softmax(attn_weights, dim=1)  # (batch_size, sequence_length, 1)
        context = torch.sum(attn_weights * encoder_outputs, dim=1)  # (batch_size, hidden_dim)
        return context, attn_weights

# 示例用法
batch_size = 2
sequence_length = 5
hidden_dim = 10

encoder_outputs = torch.randn(batch_size, sequence_length, hidden_dim)
attention_layer = Attention(hidden_dim)
context, attn_weights = attention_layer(encoder_outputs)

print("Context:", context)
print("Attention Weights:", attn_weights)

自注意力机制

import torch

import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):

def init(self, embed_dim, num_heads):

super(MultiHeadSelfAttention, self).init()

self.embed_dim = embed_dim

self.num_heads = num_heads

self.head_dim = embed_dim // num_heads

assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

self.qkv_proj = nn.Linear(embed_dim, embed_dim * 3)

self.o_proj = nn.Linear(embed_dim, embed_dim)

self.softmax = nn.Softmax(dim=-1)

def forward(self, x):

batch_size, seq_length, embed_dim = x.size()

qkv = self.qkv_proj(x) # (batch_size, seq_length, embed_dim * 3)

qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)

qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim)

q, k, v = qkv.chunk(3, dim=-1) # Each has shape (batch_size, num_heads, seq_length, head_dim)

attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) # Scaled dot-product

attn_weights = self.softmax(attn_weights) # (batch_size, num_heads, seq_length, seq_length)

attn_output = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_length, head_dim)

attn_output = attn_output.permute(0, 2, 1, 3).contiguous()

attn_output = attn_output.reshape(batch_size, seq_length, embed_dim)

output = self.o_proj(attn_output)

return output, attn_weights

示例用法

batch_size = 2

seq_length = 5

embed_dim = 16

num_heads = 4

x = torch.randn(batch_size, seq_length, embed_dim)

self_attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)

output, attn_weights = self_attention_layer(x)

print("Output:", output)

print("Attention Weights:", attn_weights)

相关推荐
Coovally AI模型快速验证1 小时前
SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈
人工智能·神经网络·算法·yolo·计算机视觉·目标跟踪·无人机
沅_Yuan1 小时前
基于 CNN-SHAP 分析卷积神经网络的多分类预测【MATLAB】
神经网络·matlab·分类·cnn·shap可解释性
寻丶幽风3 小时前
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
论文阅读·笔记·深度学习·网络安全·差分测试
Vertira3 小时前
如何在 PyTorch 中自定义卷积核参数(亲测,已解决)
人工智能·pytorch·python
强盛小灵通专卖员4 小时前
DL00871-基于深度学习YOLOv11的盲人障碍物目标检测含完整数据集
人工智能·深度学习·yolo·目标检测·计算机视觉·无人机·核心期刊
Morpheon4 小时前
循环神经网络(RNN):从理论到翻译
人工智能·rnn·深度学习·循环神经网络
Blossom.1185 小时前
基于机器学习的智能故障预测系统:构建与优化
人工智能·python·深度学习·神经网络·机器学习·分类·tensorflow
DartistCode5 小时前
动手学深度学习pytorch(第一版)学习笔记汇总
pytorch·深度学习·学习
汤姆和佩琦5 小时前
LLMs基础学习(八)强化学习专题(1)
深度学习·学习·强化学习·马尔可夫决策过程
yzx9910135 小时前
基于 PyTorch 和 OpenCV 的实时表情检测系统
人工智能·pytorch·opencv