注意力机制和自注意力机制模块的相关代码实现/缝合模块/即插即用模块

复制代码
注意力机制

import torch
import torch.nn as nn

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.attention = nn.Linear(hidden_dim, 1, bias=False)

    def forward(self, encoder_outputs):
        # encoder_outputs shape: (batch_size, sequence_length, hidden_dim)
        attn_weights = self.attention(encoder_outputs)  # (batch_size, sequence_length, 1)
        attn_weights = torch.softmax(attn_weights, dim=1)  # (batch_size, sequence_length, 1)
        context = torch.sum(attn_weights * encoder_outputs, dim=1)  # (batch_size, hidden_dim)
        return context, attn_weights

# 示例用法
batch_size = 2
sequence_length = 5
hidden_dim = 10

encoder_outputs = torch.randn(batch_size, sequence_length, hidden_dim)
attention_layer = Attention(hidden_dim)
context, attn_weights = attention_layer(encoder_outputs)

print("Context:", context)
print("Attention Weights:", attn_weights)

自注意力机制

import torch

import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):

def init(self, embed_dim, num_heads):

super(MultiHeadSelfAttention, self).init()

self.embed_dim = embed_dim

self.num_heads = num_heads

self.head_dim = embed_dim // num_heads

assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

self.qkv_proj = nn.Linear(embed_dim, embed_dim * 3)

self.o_proj = nn.Linear(embed_dim, embed_dim)

self.softmax = nn.Softmax(dim=-1)

def forward(self, x):

batch_size, seq_length, embed_dim = x.size()

qkv = self.qkv_proj(x) # (batch_size, seq_length, embed_dim * 3)

qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)

qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim)

q, k, v = qkv.chunk(3, dim=-1) # Each has shape (batch_size, num_heads, seq_length, head_dim)

attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) # Scaled dot-product

attn_weights = self.softmax(attn_weights) # (batch_size, num_heads, seq_length, seq_length)

attn_output = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_length, head_dim)

attn_output = attn_output.permute(0, 2, 1, 3).contiguous()

attn_output = attn_output.reshape(batch_size, seq_length, embed_dim)

output = self.o_proj(attn_output)

return output, attn_weights

示例用法

batch_size = 2

seq_length = 5

embed_dim = 16

num_heads = 4

x = torch.randn(batch_size, seq_length, embed_dim)

self_attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)

output, attn_weights = self_attention_layer(x)

print("Output:", output)

print("Attention Weights:", attn_weights)

相关推荐
XINVRY-FPGA5 分钟前
XCVP1902-2MSEVSVA6865 AMD 赛灵思 XilinxVersal Premium FPGA
人工智能·嵌入式硬件·神经网络·fpga开发·云计算·腾讯云·fpga
F_D_Z10 分钟前
【PyTorch】单对象分割
人工智能·pytorch·python·深度学习·机器学习
浊酒南街17 分钟前
Pytorch基础入门4
人工智能·pytorch·python
艾醒30 分钟前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
人工智能·深度学习·算法
nju_spy34 分钟前
南京大学 LLM开发基础(一)前向反向传播搭建
人工智能·pytorch·深度学习·大语言模型·梯度·梯度下降·反向传播
HUIMU_1 小时前
YOLOv5实战-GPU版本的pytorch虚拟环境配置
人工智能·pytorch·深度学习·yolo
猫天意1 小时前
【CVPR2023】奔跑而非行走:追求更高FLOPS以实现更快神经网络
人工智能·深度学习·神经网络·算法·机器学习·卷积神经网络
1373i1 小时前
【Python】pytorch数据操作
开发语言·pytorch·python
AI风老师2 小时前
深度学习入门:打好数学与机器学习基础,迈向AI进阶之路
人工智能·深度学习·机器学习
摘星星的屋顶3 小时前
论文阅读记录之《VelocityGPT 》
论文阅读·人工智能·深度学习·学习