yolov8pose 部署rknn(rk3588)、部署地平线Horizon、部署TensorRT,部署工程难度小、模型推理速度快,DFL放后处理中

特别说明:参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

之前写了yolov8、yolov8seg、yolov8obb 的 DFL 放在模型中和放在后处理中的两种不同部署方法(推荐放在后处理中);而yolov8pose只写了一篇放在模型中,有网友希望写一篇放在后处理中的,yolov8pose的DFL放在后处理中的博客来了。

1 模型和训练

老规矩,训练不涉及,训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

修改两处、增加保存onnx代码,一共修改三个地方。

修改第一处:增加以下几行代码

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处:增加以下几行代码

python 复制代码
        ps = []
        for i in range(self.nl):
            ps.append(self.cv4[i](x[i]))
        x = self.detect(self, x)
        return x, ps

增加保存onnx模型代码

python 复制代码
        print("===========  onnx =========== ")
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3", "ps1", "ps2", "ps3"]
        torch.onnx.export(self.model, dummy_input, "./yolov8n_pose.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上几个地方,运行以下两行。

python 复制代码
from ultralytics import YOLO
model = YOLO('./weights/yolov8n-pose.pt')

3 yolov8n-pose onnx 测试效果

4 时耗

将DFL放后处理中,模型和后处理时耗,使用芯片rk3588,模型输入分辨率640x640。部署rk3588板端代码

以下截图是将DFL放在模型中的时耗(模型推理时会长一些,但后处理会稍微快一点),将DFL放在模型中部署【参考链接】

相关推荐
weixin_3776348418 小时前
【YOLO模型】参数全面解读
yolo
武乐乐~1 天前
论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection
人工智能·yolo·目标检测
DragonnAi1 天前
【目标检测标签转换工具】YOLO 格式与 Pascal VOC XML 格式的互转详解(含完整代码)
xml·yolo·目标检测
彭祥.2 天前
大疆无人机搭载树莓派进行目标旋转检测
yolo·目标检测·目标跟踪
武乐乐~2 天前
YOLO-World:基于YOLOv8的开放词汇目标检测
人工智能·yolo·目标检测
小草cys3 天前
查看YOLO版本的三种方法
人工智能·深度学习·yolo
萧霍之3 天前
基于onnxruntime结合PyQt快速搭建视觉原型Demo
pytorch·python·yolo·计算机视觉
多巴胺与内啡肽.3 天前
YOLOv2框架深度解析
yolo
向哆哆4 天前
UniRepLknet助力YOLOv8:高效特征提取与目标检测性能优化
人工智能·yolo·目标检测·yolov8
孤独野指针*P4 天前
深度学习中的目标检测:从 PR 曲线到 AP
python·深度学习·yolo