yolov8pose 部署rknn(rk3588)、部署地平线Horizon、部署TensorRT,部署工程难度小、模型推理速度快,DFL放后处理中

特别说明:参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

之前写了yolov8、yolov8seg、yolov8obb 的 DFL 放在模型中和放在后处理中的两种不同部署方法(推荐放在后处理中);而yolov8pose只写了一篇放在模型中,有网友希望写一篇放在后处理中的,yolov8pose的DFL放在后处理中的博客来了。

1 模型和训练

老规矩,训练不涉及,训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

修改两处、增加保存onnx代码,一共修改三个地方。

修改第一处:增加以下几行代码

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处:增加以下几行代码

python 复制代码
        ps = []
        for i in range(self.nl):
            ps.append(self.cv4[i](x[i]))
        x = self.detect(self, x)
        return x, ps

增加保存onnx模型代码

python 复制代码
        print("===========  onnx =========== ")
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3", "ps1", "ps2", "ps3"]
        torch.onnx.export(self.model, dummy_input, "./yolov8n_pose.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上几个地方,运行以下两行。

python 复制代码
from ultralytics import YOLO
model = YOLO('./weights/yolov8n-pose.pt')

3 yolov8n-pose onnx 测试效果

4 时耗

将DFL放后处理中,模型和后处理时耗,使用芯片rk3588,模型输入分辨率640x640。部署rk3588板端代码

以下截图是将DFL放在模型中的时耗(模型推理时会长一些,但后处理会稍微快一点),将DFL放在模型中部署【参考链接】

相关推荐
AI即插即用1 天前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
AI即插即用1 天前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
shayudiandian1 天前
YOLOv8目标检测项目实战(从训练到部署)
人工智能·yolo·目标检测
Hcoco_me2 天前
YOLO目标检测学习路线图
学习·yolo·目标检测
dotphoenix2 天前
在wsl ubuntu下安装,训练,验证,导出,部署YOLO的完整例子
yolo
paopao_wu3 天前
目标检测YOLO[03]:推理入门
人工智能·yolo·目标检测
深度学习lover4 天前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
Coovally AI模型快速验证4 天前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
hans汉斯4 天前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机
AI即插即用4 天前
即插即用系列 | 2024 SOTA LAM-YOLO : 无人机小目标检测模型
pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测·无人机