yolov8pose 部署rknn(rk3588)、部署地平线Horizon、部署TensorRT,部署工程难度小、模型推理速度快,DFL放后处理中

特别说明:参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

之前写了yolov8、yolov8seg、yolov8obb 的 DFL 放在模型中和放在后处理中的两种不同部署方法(推荐放在后处理中);而yolov8pose只写了一篇放在模型中,有网友希望写一篇放在后处理中的,yolov8pose的DFL放在后处理中的博客来了。

1 模型和训练

老规矩,训练不涉及,训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

修改两处、增加保存onnx代码,一共修改三个地方。

修改第一处:增加以下几行代码

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处:增加以下几行代码

python 复制代码
        ps = []
        for i in range(self.nl):
            ps.append(self.cv4[i](x[i]))
        x = self.detect(self, x)
        return x, ps

增加保存onnx模型代码

python 复制代码
        print("===========  onnx =========== ")
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3", "ps1", "ps2", "ps3"]
        torch.onnx.export(self.model, dummy_input, "./yolov8n_pose.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上几个地方,运行以下两行。

python 复制代码
from ultralytics import YOLO
model = YOLO('./weights/yolov8n-pose.pt')

3 yolov8n-pose onnx 测试效果

4 时耗

将DFL放后处理中,模型和后处理时耗,使用芯片rk3588,模型输入分辨率640x640。部署rk3588板端代码

以下截图是将DFL放在模型中的时耗(模型推理时会长一些,但后处理会稍微快一点),将DFL放在模型中部署【参考链接】

相关推荐
极智视界8 小时前
目标检测数据集 - 自动驾驶场景道路异常检测数据集下载「包含VOC、COCO、YOLO三种格式」
yolo·自动驾驶·voc·coco·目标检测数据集·道路异常检测数据集·算法训练数据集
是Dream呀14 小时前
YOLOv6深度解析:实时目标检测的新突破
人工智能·yolo·目标检测
程序猿小D21 小时前
【完整源码+数据集+部署教程】植物生长阶段检测系统源码和数据集:改进yolo11-rmt
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·植物生长阶段检测系统
新手村领路人3 天前
c++ opencv调用yolo onnx文件
c++·opencv·yolo
zhangxiaomm3 天前
Ubuntu 搭建 yolov5
linux·yolo·ubuntu
音视频牛哥3 天前
从 AI 到实时视频通道:基于模块化架构的低延迟直播全链路实践
人工智能·opencv·yolo·计算机视觉·音视频·大牛直播sdk·ai人工智能
飞翔的佩奇4 天前
【完整源码+数据集+部署教程】海上场景水上交通物体检测图像分割系统源码和数据集:改进yolo11-HGNetV2
python·yolo·计算机视觉·毕业设计·数据集·yolo11·水上交通物体检测
格林威4 天前
工业相机使用 YOLOv8深度学习模型 及 OpenCV 实现目标检测简单介绍
人工智能·深度学习·数码相机·opencv·yolo·目标检测·计算机视觉
Virgil1394 天前
【YOLO学习笔记】YOLOv8详解解读
笔记·学习·yolo
lxmyzzs5 天前
【图像算法 - 08】基于 YOLO11 的抽烟检测系统(包含环境搭建 + 数据集处理 + 模型训练 + 效果对比 + 调参技巧)
人工智能·yolo·目标检测·计算机视觉